и интерполирование функций , раздел теории функций, посвященный изучению вопросов приближённого представления функций.
Приближение функций - нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций - частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g, а в более общем случае - и значения некоторых их производных.
Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р- й степенью, Lp, р ³1 , в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [ а, b ]) по формулам
и
Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида
ak jk ( x ),
где (j1,..., jn-заданные функции, a a1,..., an - произвольные числа. Обычно это алгебраические многочлены
akxk
или тригонометрические полиномы
а0 + ( ak cos kx + bk sin kx ) .
Рассматриваются также полиномы по ортогональным многочленам , по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P ( x ) /Q ( x ) , где в качестве Р и Q берутся алгебраические многочлены заданной степени.
В последнее время (60-70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [ a, b ] разбивается точками a x0 < x1 < ... < xn b, на каждом отрезке [ xk, xk+1 ] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [ а, b ] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xk правильного их расположения на отрезке [ а, b ] . Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.
Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.
Теория приближений функций берёт начало от работ П. Л. Чебышева . Он ввёл одно из основных понятий теории - понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f ( x )полиномами ak jk ( x ) в метрике С называется величина
En min || f - ak jk ( x )||c,
где минимум берётся по всем числам а1,..., an. Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [-1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n, а многочлен наилучшего приближения таков, что для него
xn+1 - (1/2n) cos ( n + 1) arccos x .
Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен , в том и только в том случае является многочленом наилучшего приближения непрерывной функции f в метрике С [-1, 1], если существуют n + 2 точки -1 £ x1 < x2 < ... < xn+2 £ 1, в которых разность f ( x ) - 2принимает максимальное значение своего модуля с последовательно чередующимися знаками.
Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.
С начала 20 в. началось систематическое исследование поведения при n - ¥ последовательности En - наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин En в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой - изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.
Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка
En £ Aq n,
где q < 1 и А - некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).
Для того чтобы функция f периода 2p имела производную порядка r, r 0 , 1,2,..., удовлетворяющую условию
| f (r)( x + h ) - f (r)( x )| £ M| h |a ,
0 < a < 1, М - некоторое положительное число, или условию
| f (r)( x + h ) - 2 f (r)( x ) + f (r)( x - h )| £ M| h |a
(в этом случае a 1), необходимо и достаточно, чтобы для наилучших приближений функции f тригонометрическими полиномами была справедлива оценка
Еп £ А/n r+ a ,
где А - некоторое положительное число, не зависящее от n. В этом утверждении прямая теорема была в основном получена Д. Джексоном (США), а обратная является результатом исследований С. Н. Бернштейна , Ш. Ж. Ла Валле Пуссена и А. Зигмунда (США). Характеристика подобных классов функций, заданных на отрезке, в терминах наилучших приближении алгебраическими многочленами оказалась невозможной. Её удалось получить, привлекая к рассмотрению приближение функций с улучшением порядка приближения вблизи концов отрезка.
Возможность характеризовать классы функций с помощью приближений их полиномами нашла приложение в ряде вопросов математического анализа. Развивая исследования по наилучшим приближениям функций многих переменных полиномами, С. М. Никольский построил теорию вложений важных для анализа классов дифференцируемых функций многих переменных, в которой имеют место не только прямые, но и полностью обращающие их обратные теоремы.
Для приближений в метрике L2 полином наилучшего приближения может быть легко построен. Для других пространств нахождение полиномов наилучшего приближения является трудной задачей и её удаётся решить только вотдельных случаях. Это привело к разработке разного рода алгоритмов для приближённого нахождения полиномов наилучшего приближения.
Трудность нахождения полиномов наилучшего приближения отчасти объясняется тем, что оператор, сопоставляющий каждой функции её полином наилучшего приближения, не является линейным: полином наилучшего приближения для суммы f + g не обязательно равен сумме полиномов наилучшего приближения функций f и g. Поэтому возникла задача изучения (по возможности простых) линейных операторов, сопоставляющих каждой функции полином, дающий хорошее приближение. Например, для периодической функции f ( x ) можно брать частные суммы её ряда Фурье Sn ( f, х ) . При этом справедлива оценка (теорема А. Лебега )
|| f - Sn ||c£ ( Ln + 1) En ,
где Ln - числа, растущие при n -¥ как (4/p2) ln n . Они получили название констант Лебега. Эта оценка показывает, что полиномы Sn доставляют приближение, не очень сильно отличающееся от наилучшего. Подобная оценка имеет место и для приближений интерполяционными тригонометрическими полиномами с равноотстоящими узлами интерполирования, а также для приближений интерполяционными алгебраическими многочленами на отрезке [-1, 1] с узлами , k 1, 2 ,..., n, т. е. в нулях полинома Чебышева cos n arccos x. Для основных встречающихся в анализе классов функций известны такие линейные операторы, построенные с помощью рядов Фурье или на основе интерполяционных полиномов, что значениями этих операторов являются полиномы, дающие на классе тот же порядок убывания приближений при n - ¥, что и наилучшие приближения.
А. Н. Колмогоров начал изучение нового вопроса теории приближений - задачи о нахождении при фиксированном n такой системы функций j1,..., j n, для которой наилучшие приближения функций заданного класса полиномами были бы наименьшими (т. н. задача о поперечнике класса функций). В этом направлении в дальнейшем было выяснено, например, что для ряда важных классов периодических функций наилучшими в указанном смысле системами являются тригонометрические полиномы.
Теория приближений функций является одним из наиболее интенсивно разрабатываемых направлений в теории функций. Идеи и методы теории приближений являются отправной точкой исследования в ряде вопросов вычислительной математики. С 1968 в США издаётся специализированный журнал 'Journal of Approximation Theory'.
См. также Приближение функций комплексного переменного .
Лит.: Монографии . Ахиезер Н. И., Лекции по теории аппроксимации, 2 изд., М., 1965; Гончаров В. Л., Теория интерполирования и приближения функций, 2 изд., М., 1954; Натансон И. П., Конструктивная теория функций, М. - Л., 1949; Никольский С. М., Приближение функций многих переменных и теоремы вложения, М., 1969; Тиман А. Ф., Теория приближения функций действительного переменного, М., 1960.
Обзоры. Математика в СССР за тридцать лет. 1917-1947, М. - Л., 1948, с. 288-318; Математика в СССР за сорок лет. 1917-1957, т. 1, М., 1959, с. 295-379; История отечественной математики, т. 3, К., 1968, с. 568-588.
С. А. Теляковский.