математическое понятие, означающее, что некоторая переменная величина имеет предел . В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).
С. последовательности { an } , n 1, 2,..., означает существование у неё конечного предела ; С. ряда - конечного предела (называемого суммой ряда) у последовательности его частичных сумм , ; С. бесконечного произведения b1 b2... bn - конечного предела, не равного нулю, у последовательности конечных произведений pn b1b2... bn, n 1, 2,...; С. интеграла от функции f ( x ) , интегрируемой по любому конечному отрезку [ а, b ] ,- конечного предела у интегралов при b - +|, называется несобственным интегралом .
Свойство С. тех или иных математических объектов играет существенную роль как в вопросах теории, так и в приложениях математики. Например, часто используется представление каких-либо величин или функций с помощью сходящихся рядов; так, для основания натуральных логарифмов е имеется разложение его в сходящийся ряд
для функции sin х - в сходящийся при всех х ряд
Подобные ряды могут быть использованы для приближённого вычисления рассматриваемых величин и функций. Для этого достаточно взять сумму нескольких первых членов, при этом чем больше их взять, тем с большей точностью будет получено нужное значение. Для одних и тех же величин и функций имеются различные ряды, суммой которых они являются, например,
,
.
При практических вычислениях в целях экономии числа операций (а следовательно, экономии времени и уменьшения накопления ошибок) целесообразно из имеющихся рядов выбрать ряд, который сходится 'более быстро'. Если даны два сходящихся ряда и , и , . - их остатки, то 1-й ряд называется сходящимся быстрее 2-го ряда, если
.
Например, ряд
сходится быстрее ряда
.
Используются и другие понятия 'более быстро' сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в 'более быстро' сходящийся. Аналогично случаю рядов вводится понятие 'более быстрой' С. и для несобственных интегралов, для которых также имеются способы улучшения их С.
Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод ) . Для практического нахождения приближённых решений уравнений широко используются ЭВМ.
Если изображать члены a n последовательности { an } на числовой прямой, то С. этой последовательности к а означает, что расстояние между точками an и а становится и остаётся сколь угодно малым с возрастанием n. В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство ) . Если последовательность { an } сходится к а, то вне любой окрестности точки а лежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство ) .
В математическом анализе используются различные виды С. последовательности функций { fn ( x )} к функции f ( x ) (на некотором множестве М). Если для каждой точки X0 (из М ) , то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества ) , то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций fn ( x ) к f ( x )в каждой точке не следует, вообще говоря, С. интегралов от функций fn ( x ) к интегралу от f ( x ) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность { fn ( x )} называется равномерно сходящейся к f ( x ) на множестве М, если
Этот вид С. соответствует определению расстояния между функциями f ( x ) и (( х ) по формуле
Д. Ф. Егоров доказал, что если последовательность измеримых функций сходится почти всюду на множестве М, то из М можно так удалить часть сколь угодно малой меры, чтобы на оставшейся части имела место равномерная С.
В теории интегральных уравнений, ортогональных рядов и т. д. широко применяется понятие средней квадратической С.: последовательность { fn ( x )} сходится на отрезке [ a, b ] в среднем квадратическом к f ( x ) , если
.
Более общо, последовательность { fn ( x )} сходится в среднем с показателем р к f ( x ) , если
.
Эта С. соответствует заданию расстояния между функциями по формуле
.
Из равномерной С. на конечном отрезке вытекает С. в среднем с любым показателем р. Последовательность частичных сумм разложения функции j(х) с интегрируемым квадратом по нормированной ортогональной системе функций может расходиться в каждой точке, но такая последовательность всегда сходится к j(х) в среднем квадратическом. Рассматриваются также другие виды С. Например, С. по мере: для любого e > 0 мера множества тех точек, для которых , стремится к нулю с возрастанием n', слабая С.:
для любой функции j(x) с интегрируемым квадратом (например, последовательность функций sinx, sin2x,..., sinnx, ... слабо сходится к нулю на отрезке [-p, p], так как для любой функции j(х) с интегрируемым квадратом коэффициенты ряда Фурье стремятся к нулю).
Указанные выше и многие другие понятия С. последовательности функций систематически изучаются в функциональном анализе, где рассматриваются различные линейные пространства с заданной нормой (расстоянием до нуля) - так называемые банаховы пространства. В таких пространствах можно ввести понятия С. функционалов, операторов и т. д., определяя для них соответствующим образом норму. Наряду со С. по норме (так называемой сильной С.), в банаховых пространствах рассматривается слабая С., определяемая условием для всех линейных функционалов; введённая выше слабая С. функций соответствует рассмотрению нормы . В современной математике рассматривается также С. по частично упорядоченным множествам (см. Упорядоченные и частично упорядоченные множества ) . В теории вероятностей для последовательности случайных величин употребляются понятия С. с вероятностью 1 и С. по вероятности.
Ещё математики древности (Евклид, Архимед) по существу употребляли бесконечные ряды для нахождения площадей и объёмов. Доказательством С. рядов им служили вполне строгие рассуждения по схеме исчерпывания метода . Термин 'С.' в применении к рядам был введён в 1668 Дж. Грегори при исследовании некоторых способов вычисления площади круга и гиперболического сектора. Математики 17 в. обычно имели ясное представление о С. употребляемых ими рядов, хотя и не проводили строгих с современной точки зрения доказательств С. В 18 в. широко распространилось употребление в анализе заведомо расходящихся рядов (в частности, их широко применял Л. Эйлер ) . Это, с одной стороны, привело впоследствии ко многим недоразумениям и ошибкам, устранённым лишь с развитием отчётливой теории С., а с другой - предвосхитило современную теорию суммирования расходящихся рядов. Строгие методы исследования С. рядов были разработаны в 19 в. (О. Коши , Н. Абель , К . Вейерштрасс , Б . Больцано и др.). Понятие равномерной С. было введено Дж. Стоксом . Дальнейшие расширения понятия С. были связаны с развитием теории функций, функционального анализа и топологии.
Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., т. 1-2, М., 1971-73; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1-2, М., 1970; Никольский С. М., Курс математического анализа, т. 1-2, М., 1973.