сходимость, важный частный случай сходимости . Последовательность функций f n ( x )( n 1, 2, ...) называется равномерно сходящейся на данном множестве к предельной функции f ( x ) , если для каждого e > 0 существует такое N N (e),что i f ( x ) - f n (x)i < e при n > N для всех точек х из данного множества. Например, последовательность функций fn ( x ) x nравномерно сходится на отрезке [0, 1/2] к предельной функции f ( x ) 0, так как i f ( x ) - f n (x)i £ (1/2) n < e для всех 0 £ x £ 1/2, если только n > ln (1/e)/ln2, но она не будет равномерно сходящейся на отрезке [0, 1], где предельной функцией является f ( x ) 0 при 0 £ x < 1 и f (1) 1, т.к. для любого сколько угодно большого заданного n существуют точки h, удовлетворяющие неравенствам , для которых i f (h) - f n (h)i hn > 1/2. Понятие Р. с. допускает простую геометрическую интерпретацию: если последовательность функций f n ( x ) равномерно сходится на некотором отрезке к функции f ( x ),то это означает, что для любого e > 0 все кривые у f n ( x ) с достаточно большим номером будут расположены внутри полосы ширины 2e, ограниченной кривыми у f ( x )| e для любого х из этого отрезка (см. рис. ).
Равномерно сходящиеся последовательности функций обладают важными свойствами; например, предельная функция равномерно сходящейся последовательности непрерывных функций также непрерывна (приведённый выше пример показывает, что предельная функция последовательности непрерывных функций, которая не является равномерно сходящейся, может быть разрывной). Важную роль в математическом анализе играет теорема Вейерштрасса: каждая непрерывная на отрезке функция может быть представлена как предел равномерно сходящейся последовательности многочленов (или тригонометрических полиномов). См. также Приближение и интерполирование функций .