(хим.).? Довольно трудно проследить, каким образом исторически выработалось понятие о П., или, как иногда выражаются, насыщенных соединениях. Само понятие о насыщении химического сродства появилось при изучении реакций кислот со щелочами; Бертолле думал, что этим путем можно даже выразить числами степень насыщения; так, в "Recherches sur les lois de l'affinit e " он пишет: "определить избирательное сродство двух тел по отношению к третьему... значит... найти, в каком отношении это последнее распределяет свою деятельность между двумя первыми, и найти, какой степени насыщения достигают эти оба тела, когда они борются друг с другом... Говоря о насыщении какого-нибудь тела, я подразумеваю не абсолютное насыщение, когда взаимодействие становится уже невозможным, а только некоторую степень насыщения, которую можно легко узнать... Таково, например, состояние нейтральности, в котором не проявляются своеобразные особенности составных частей... Степень насыщения кислой винно-калиевой соли можно найти, определив количество едкого кали, необходимого для превращения ее в нейтральное соединение". Определяя количества оснований, потребных для нейтрализации данного количества кислоты, азотной, например, мы теперь находим эквиваленты (см.) этих оснований, а не степень их насыщения. Понятие о последней в интересующем нас смысле выработалось над многоосновными кислотами. [Совершенно случайно Бертолле выбрал для своего примера соль двухосновной кислоты.]. Возможность соединения фосфорной кислоты (см.), например, с одним, двумя и тремя "атомами" воды или эквивалентами оснований с образованием PO 5 ?HO, PO 5 ?2HO и PO 5 ?3HO (Р = 15,5, О = 8) и т. д. подготовила до известной степени почву для развитого впоследствии Франкландом представления о многоатомных радикалах (см. Замещение, Радикалы и Структура). Исследования цинкорганических соединений Франкландом, мышьяково-органических Байером (см. Какодил) и оловянно-органических Кагуром выяснили, что свойства радикалов, способных соединяться с другими элементами подобно простым телам, должны быть сведены, с одной стороны, к свойствам атомов, эти радикалы образующих, а с другой ? к типу данного соединения; так, все соединения общего типа Sn 2 X 4 (Sn = 59) оказались неспособными к реакциям присоединения или в одинаковой степени насыщенными (Кагур), между тем как соединения типа Sn 2 X 2 (или nSn 2 X 2 (Sn = 59), относившиеся к закисному типу, были найдены ненасыщенными, способными к реакциям соединения с переходом в насыщенный, предельный тип Sn 2 X 4 (Кагур). Впоследствии Д. И. Менделеев, руководствуясь законом замещения (см.), и сам Кагур распространили это типическое воззрение на большое число органических соединений. Теперь мы относим к П. соединениям, как к соединениям типа CX 4 : углеводороды формулы C n H 2n+2 (см. Парафины), спирты одноатомные состава C n H 2n+2 O и многоатомные C n H 2n+2 O m (mn), альдегиды и кетоны одноатомные формулы C n H 2n O, двухатомные C n H 2n-2 O 2 и т. д., кислоты одноосновные C n H 2n O 2 , двухосновные состава C n H 2n O 4 и т. д.; такая классификация является, однако, не вполне соответствующей понятию о предельности и, следовательно, в некоторой степени условной. Из всех только что перечисленных веществ для углеводородов C n H 2n+2 действительно неизвестно соединений высшего типа, что же касается остальных, то все они более или менее способны к реакциям присоединения; спирты, кетоны (?), кислоты, эфиры, простые и сложные, образуют так называемые "молекулярные" соединения, а альдегиды реагируют как настоящие ненасыщенные соединения, напоминая всего ближе ? по легкой способности к соединению с кислородом, ? например, так называемые "закиси" неорганической химии. Дальнейшим шагом в развитии понятия о предельных соединениях надо считать появление периодического закона (см.). Периодическая система Д. И. Менделеева, указав, что формулы высших окислов типа воды ("высших солеобразных окислов", как называет их Менделеев) правильно изменяются с нарастанием атомного веса и отвечают общим формулам: R 2 O, RO, R 2 O 3 , RO 2 , R 2 O 5 , RO 3 , R 2 O 7 и RO 4 (R ? соответственный элемент), вместе с тем выяснила, что эти предельные "солеобразные" соединения на самом деле не являются вполне насыщенными кислородными соединениями, так как "перекиси" этих элементов содержат более кислорода; с другой стороны, тот же периодический закон, подметив, что для элементов, образующих и кислородные, и водородные соединения, сумма атомности по кислороду (в "солеобразных окислах") и водороду постоянна и равна восьми, заставляет нас считать водородные соединения RH 4 , RH 3 , RH 2 и RH между собой равноценными и столь же предельными, насколько предельны и "высшие солеобразные окислы" этих элементов RO 2 , R 2 O 5 , RO 3 и R 2 O 7 . Это обстоятельство наиболее ясно позволяет уловить разницу между прежним и современным взглядом на П. соединения, так как по типу RH 3 (NH 3 и PH 3 например) является во многих отношениях веществом не насыщенным, т. е. способным к многообразным реакциям прямого присоединения. Дюма, как известно, давно пытался уподобить аммиак этилену (см.); очевидно, что для каждого данного "химического" тела существуют свои П. соединения и что каждый раз, когда мы называем какое-нибудь соединение П., мы должны еще указать и элемент, по отношению к которому оно является таковым (см. Типы химические Жерара и Дюма).
А. И. Горбов. ? .