К статье МНОГОГРАННИК
Рассматривая таблицу, можно заметить интересное соотношение между числом вершин N0, числом ребер N1 и числом граней N2 любого выпуклого правильного многогранника {p, q}. Речь идет о соотношении
которое называется формулой Эйлера в честь открывшего ее Л.Эйлера (1707-1783). Левая часть формулы (4) называется "эйлеровой характеристикой".
Формула Эйлера используется в сочетании с формулами (2) и (3). Из (4) и (2) получаем:
Отсюда следует выражение для N1 через p и q:
где
Воспользовавшись еще раз формулой (2), находим аналогичные выражения для N0 и N2:
Подставляя полученные выражения в формулы (3) и (4), получаем, что число прямых симметрий многогранника {p, q} равно
Это число можно записать также в одной из эквивалентных форм: qN0, 2N1 или pN2.
Область применения формулы Эйлера. Значимость формулы Эйлера усиливается тем, что она применима не только к платоновым телам, но и к любому многограннику, гомеоморфному сфере (см. ТОПОЛОГИЯ). Это утверждение доказывается следующим образом.
Пусть P - любой многогранник, гомеоморфный сфере, с N0 вершинами, N1 ребрами и N2 гранями; пусть ? = N0 - N1 + N2 - эйлерова характеристика многогранника P. Требуется доказать, что ? = 2. Так как Р гомеоморфен сфере, мы можем удалить одну грань и превратить остальные в некоторую конфигурацию на плоскости (например, на рис. 5,а и 5,б вы видите призму, у которой удалена передняя плоскость). "Плоскостная конфигурация" представляет собой сеть точек и прямолинейных отрезков, называемых соответственно "вершинами" и "ребрами", при этом вершины служат концами ребер. Вершины и ребра рассматриваемой нами конфигурации мы считаем смещенными и деформированными вершинами и ребрами многогранника. Таким образом, эта конфигурация имеет N0 вершин и N1 ребер. Остальные N2 - 1 граней многогранника деформируются в N2 - 1 непересекающихся областей на плоскости, определяемой конфигурацией. Назовем эти области "гранями" конфигурации. Вершины, ребра и грани конфигурации и определяют эйлерову характеристику, которая в данном случае равна ? - 1.
Теперь мы проведем сплющивание так, что если удаленная грань была р-угольником, то все N2 - 1 граней конфигурации заполнят внутренность р-угольника. Пусть А - некоторая вершина внутри р-угольника. Предположим, что в А сходятся r ребер. Если удалить А и все r сходящихся в ней ребер, то число вершин уменьшится на 1, ребер - на r, граней - на r - 1 (см. рис. 5,б и 5,в). У новой конфигурации N?0 = N0 - 1 вершин, N?1 = N1 - r ребер и N?2 = N2 - 1 - (r - 1) граней; следовательно,
Таким образом, удаление одной внутренней вершины и сходящихся в ней ребер не меняет эйлеровой характеристики конфигурации. Поэтому, удалив все внутренние вершины и сходящиеся в них ребра, мы тем самым сведем конфигурацию к р-угольнику и его внутренности (рис. 5,г). Но эйлерова характеристика останется по-прежнему равной ? - 1, а так как конфигурация имеет р вершин, р ребер и 1 грань, мы получаем
Таким образом, ? = 2, что и требовалось доказать.
Далее можно доказать, что если эйлерова характеристика многогранника равна 2, то многогранник гомеоморфен сфере. Иначе говоря, мы можем обобщить полученный выше результат, показав, что многогранник гомеоморфен сфере в том и только в том случае, если его эйлерова характеристика равна 2.
Обобщенная формула Эйлера. Для классификации других многогранников используется обобщенная формула Эйлера. Если у некоторого многогранника 16 вершин, 32 ребра и 16 граней, то его эйлерова характеристика равна 16 - 32 + 16 = 0. Это позволяет утверждать, что данный многогранник принадлежит классу многогранников, гомеоморфных тору. Отличительной особенностью этого класса является эйлерова характеристика, равная нулю. Более общо, пусть Р - многогранник с N0 вершинами, N1 ребрами и N2 гранями. Говорят, что данный многогранник гомеоморфен поверхности рода n в том и только в том случае, если
Наконец, следует заметить, что ситуация существенно усложняется, если смягчить прежнее ограничение, согласно которому никакие две грани многогранника не должны пересекаться. Например, появляется возможность существования двух негомеоморфных многогранников с одной и той же эйлеровой характеристикой. Их следует различать по другим топологическим свойствам.