логарифма закон, одна из предельных теорем теории вероятностей, близкая по смыслу к закону больших чисел (см. Больших чисел закон ) . П. л. з. указывает при определённых условиях точный порядок роста сумм независимых случайных величин при увеличении числа слагаемых. Пусть, например, случайные величины X1, X2,..., Xn,... независимы и каждая из них принимает два значения: +1 или -1, каждое с вероятностью, равной 1/2, и пусть sn X1 + ... + Xn. Тогда с вероятностью, равной 1, при любом d > 0:
1) при всех n, больших некоторого (зависящего от случая) номера N:
sn < (1 + d)
2) для бесконечной последовательности номеров n:
sn > (1 - d) .
Название 'П. л. з.' объясняется наличием в вышеприведённых выражениях множителя In In n. П. л. з. возник из задач т. н. метрической теории чисел (см. Чисел теория ) . Первый результат, относящийся к П. л. з., был установлен в 1924 А. Я. Хинчиным . Дальнейшие существенные продвижения в изучении условий приложимости П. л. з. связаны с работами А. Н. Колмогорова (1929) и В. Феллера (1943).
Лит.: Феллер В., Введение в теорию вероятностей и её приложения, пер. с англ., 2 изд., т. 1, М., 1967.
Ю. В. Прохоров.