Значение ГЮЙГЕНС ХРИСТИАН в Большой советской энциклопедии, БСЭ

Что такое ГЮЙГЕНС ХРИСТИАН

Хёйгенс (Huygens) Христиан (14. 4 . 1629, Гаага, - 8 . 7. 1695, там же), нидерландский механик, физик и математик, создатель волновой теории света. Первый иностранный член Лондонского королевского общества (с 1663). Г. учился в университетах Лейдена и Бреды, где изучал юридические науки и математику. В 22 года он опубликовал работу об определении длины дуг окружности, эллипса и гиперболы. В 1654 появилась его работа 'Об определении величины окружности', явившаяся важнейшим вкладом в теорию определения отношения окружности к диаметру (вычисление числа p). Затем последовали другие значительные математические трактаты по исследованию циклоиды, логарифмической и цепной линии и др. Его трактат 'О расчётах при игре в кости' (1657) - одно из первых исследований в области теории вероятностей. Г. совместно с Р. Гуком установил постоянные точки термометра - точку таяния льда и точку кипения воды. В эти же годы Г. работает над усовершенствованием объективов астрономических труб, стремясь увеличить их светосилу и устранить хроматическую аберрацию. С их помощью Г. открыл в 1655 спутник планеты Сатурн (Титан), определил период его обращения и установил, что Сатурн окружен тонким кольцом, нигде к нему не прилегающим и наклонным к эклиптике. Все наблюдения приведены Г. в классической работе 'Система Сатурна' (1659). В этой же работе Г. дал первое описание туманности в созвездии Ориона и сообщил о полосах на поверхностях Юпитера и Марса.

Астрономические наблюдения требовали точного и удобного измерения времени. В 1657 Г. изобрёл первые маятниковые часы, снабженные спусковым механизмом; своё изобретение Г. описал в работе 'Маятниковые часы' (1658). Второе, расширенное издание этой работы вышло в 1673 в Париже. В первых 4 частях её Г. исследовал ряд проблем, связанных с движением маятника. Он дал решение задачи о нахождении центра качания физического маятника - первой в истории механики задачи о движении системы связанных материальных точек в заданном силовом поле. В этой же работе Г. установил таутохронность движения по циклоиде и, разработав теорию эволют плоских кривых, доказал, что эволюта циклоиды есть также циклоида, но по-другому расположенная относительно осей.

В 1665, при основании Французской АН, Г. был приглашен в Париж в качестве её председателя, где и прожил почти безвыездно 16 лет (1665-81). В 1680 Г. работал над созданием 'планетной машины' - прообраза современного планетария,- для конструкции которой разработал достаточно полную теорию цепных, или непрерывных, дробей. Это - последняя работа, выполненная им в Париже.

В 1681, вернувшись на родину, Г. снова занялся оптическими работами. В 1681-87 он производил шлифовку объективов с огромными фокусными расстояниями в 37, 54,63 м . Тогда же Г. сконструировал окуляр, носящий его имя, который применяется до сих пор (см. Окуляр ) . Весь цикл оптических работ Г. завершается знаменитым 'Трактатом о свете' (1690). В нём впервые в совершенно отчётливой форме излагается и применяется к объяснению оптических явлений волновая теория света. В главе 5 'Трактата о свете' Г. дал объяснение явления двойного лучепреломления, открытого в кристаллах исландского шпата; классическая теория преломления в оптически одноосных кристаллах до сих пор излагается на основе этой главы.

К 'Трактату о свете' Г. добавил в виде приложения рассуждение 'О причинах тяжести', в котором он близко подошёл к открытию закона всемирного тяготения. В своём последнем трактате 'Космотеорос' (1698), опубликованном посмертно, Г. основывается на теории о множественности миров и их обитаемости. В 1717 трактат был переведён на рус. язык по приказанию Петра I.

Соч.: -uvres complètes, t. 1-22, 28 (supplement), La Haye, 1905-50 (имеется библ. трудов Г.); в рус. пер. - Три трактата о механике, М. - Л., 1951; Трактат о свете, М. - Л., 1935; О найденной величине круга, в кн.: О квадратуре круга. (Архимед, Гюйгенс, Ламберт, Лежандр), 3 изд., М. - Л., 1936.

Лит.: Франкфурт У. И., Френк А. М., Христиан Гюйгенс, М., 1962; Herzberger М., Optics from Euclid to Huygens, 'Applied Optics', 1966, v. 5, | 9, p. 1383-93.

Большая советская энциклопедия, БСЭ.