теория множеств, формулировка множеств теории в виде формальной (аксиоматической) системы (см. Аксиоматический метод ) . Основным побудительным стимулом для построения А. т. м. явилось открытие в 'наивной' теории множеств Г. Кантора . предназначенной для обоснования классической математики, парадоксов (антиномий), т. е. противоречий. Все эти парадоксы (например, парадокс Кантора, связанный с рассмотрением 'множества всех множеств', или парадокс Рассела, в котором рассматривается 'множество всех множеств, не содержащих самих себя в качестве элемента') обусловлены неограниченным применением в канторовой теории множеств т. н. принципа свёртывания (или абстракции), согласно которому для всякого свойства существует множество, состоящее из всех предметов, обладающих этим свойством (этот принцип фактически содержится уже в первой фразе всех традиционных изложений теории множеств: 'мы будем рассматривать произвольные множества элементов произвольной природы' и т.п.).
В первой из известных систем А. т. м. - системе Цермело - Френкеля, или ZF (сформулирована в 1908 Э. Цермело , пополнена в 1921 - 22 и позже А. Френкелем), принцип свёртывания заменяется несколькими его частными случаями: аксиомой существования пары {х,у} любых (данных) множеств х и у, аксиомой существования объединения всех элементов произвольного множества х в новое множество S ( x ), аксиомой существования множества Р ( х ) всех частей произвольного множества х, аксиомой существования бесконечного множества и т.н. схемами аксиом выделения (согласно которой для всякого множества х и свойства р существует множество элементов х, обладающих свойством j) и подстановки (утверждающей, что для любого взаимно однозначного отображения элементов множества х, описываемого на языке системы ZF, существует множество таких z, на которые отображаются эти элементы х ) . Не подпадает под схему принципа свёртывания т. н. аксиома выбора (о существовании 'множества представителей', т. е. множества содержащего в точности по одному элементу из каждого из данных непустых попарно непересекающихся множеств). Как и во всякой другой системе А. т. м., в ZF постулируется также аксиома объёмности (экстенсиональности), согласно которой множества, состоящие из одних и тех же элементов, совпадают. Иногда к ZF присоединяют некоторые др. аксиомы более специального назначения. Формулы ZF получаются из 'элементарных формул' вида х Î у (' x принадлежит y ') средствами исчисления предикатов .
Позднее были построены многочисленные видоизменения ZF и систем, отличающихся от ZF тем, что 'плохие' (приводящие к парадоксам) совокупности элементов не вовсе исключаются из рассмотрения, а признаются 'собственно классами', т. е. множествами, не могущими принадлежать в качестве элемента другим множествам (эта идея, идущая от Дж . Неймана , была затем развита швейцарским математиком П. Бернайсом, К. Гёделем и др.). Системы эти, в отличие от ZF, могут быть заданы посредством конечного числа аксиом.
Другой подход к А. т. м. воплощён в теории типов Б. Рассела и А. Н. Уайтхеда (Англия, 1910-13) и её различных модификациях, в которых на аксиому свёртывания не накладывают типичных для ZF и др. систем ограничений, но реформируют сам язык теории: вместо одного алфавита переменных х, у, z... вводится бесконечная последовательность алфавитов: x 1, y 1, z 1,...; x 2, y 2, z 2,...;...; x n, y n, z n,...;... различных 'типов' n, а элементарные формулы имеют вид x nÎ y n+1 или
x n y n . Теории типов строятся на основе исчисления предикатов с различными видами переменных [а при естественной замене символики x nÎ y n+1 на y n+1( x n) и x n y n на x n ~ y n сами могут рассматриваться как системы расширенного исчисления предикатов, а не теории множеств]. В системе NF (New Foundation), введённой в 1937 американским математиком У. в. О. Куайном, комбинируются оба упомянутых подхода: язык NF - тот же, что в ZF, а аксиомы свёртывания должны получаться из аксиом теории типов удалением индексов при переменных.
Для различных систем А. т. м. и отдельных их аксиом рассматривался вопрос об их (относительной) непротиворечивости . В 1940 К. Гёдель доказал относительную непротиворечивость аксиомы выбора и континуум-гипотезы (см. Континуума проблема ) для описанной им системы å и ZF; в дальнейшем этот результат был перенесён на теорию типов (самую слабую из перечисленных систем), а затем и на NF (в соответствующей форме). В 1963 американский математик П. Дж. Коэн доказал для ZF (а тем самым и для å ) относительную непротиворечивость отрицания континуум-гипотезы, в т. ч. и в случае, если к ZF присоединена аксиома выбора. Он же доказал, что к ZF можно присоединить без возникновения противоречия аксиому о том, что континуум не может быть вполне упорядочен (из этой аксиомы сразу следует отрицание аксиомы выбора).
Упомянутых ограничений на принцип свёртывания (или на язык системы) достаточно, чтобы в А. т. м. не возникал ни один из известных парадоксов. Однако проблема абсолютной непротиворечивости, ввиду теоремы Гёделя о неполноте (см. Метатеория ) , требует привлечения существенно новых идей. В частности, полученное в 1960 доказательство непротиворечивости ZF (и теории типов, но не NF ) потребовало привлечения средств т. н. ультраинтуиционизма.
Лит.: Гёдель К., Совместимость аксиомы выбора и обобщённой континуум-гипотезы с аксиомами теории множеств, пер. с англ., 'Успехи математических наук', 1948, т. 3, в. 1; Есенин-Вольпин А. С., К обоснованию теории множеств, в сборнике: Применение логики в науке и технике, [М., I960], с. 22 - 118; Френкель А. А. и Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966 (библ.); Коэн П. Дж., Теория множеств и континуум-гипотеза, пер. с англ., М., 1969; Quine W. О. van, Set theory and its logic, Camb., 1963.
Ю. А. Гастев, А. С. Есенин-Вольпин.