Значение АНГАРМОНИЧЕСКОЕ ОТНОШЕНИЕ ТОЧЕК в Энциклопедии Брокгауза и Ефрона

Что такое АНГАРМОНИЧЕСКОЕ ОТНОШЕНИЕ ТОЧЕК

Ангармоническое отношение четырех точек А, В, С, D по одной прямой есть частное отношений расстояний двух из них от двух других, напр. CA/CB: DA/DB; короче оно пишется (AB CD), или DA/DC: BA/BC = (AС DB). Таких выражений можно составить 6. Главное значение А. отношения в теории подобия фигур происходит вследствие следующего свойства его: если пучок четырех прямых пересечен двумя трансверсалями, то А. отношение каждого ряда точек пересечения трансверсалей с лучами пучка постоянно. Это отношение называется поэтому А. отношением пучка. Если О ? вершина пучка, то А. отношение его означается (О. ABCD). Оно составляется из отношения синусов углов, заключенных между прямыми, а именно (О. АВСD) = (sinCOA/sinСОВ): (sinDOA/sinDOB).

Теоремы относительно А. отношения: А. отношение пучка, проходящего через четыре точки окружности круга, вершина которого лежит на той же окружности, постоянно. А. отношение ряда точек пересечения четырех постоянных касательных круга с произвольною пятою касательною ? постоянно и равно А. отношению четырех точек касания относительно произвольной точки окружности и др.

Аналитически А. отношение пучка прямых x 1 = kx 2 , x 1 = lx 3 , x 1 = mx 3 , x 1 = nx 3 есть

[(k ? 1)/(n ? 1)]:[(k ? m)/(n ? m)]

Если А. отношение = ? 1, то оно приобретает название гармонического (см. это сл.). Вместо А. отношения его называют также двойным отношением (Doppelverh a ltniss). Ср. Шарль, "Trait e de geometrie superieure".

Брокгауз и Ефрон. Энциклопедия Брокгауза и Ефрона.