раздел химии, изучающий соединения углерода, к которым относятся, во-первых, вещества, составляющие бльшую часть живой материи (белки, жиры, углеводы, нуклеиновые кислоты, витамины, терпены, алкалоиды и т.д.); во-вторых, многие вещества, производимые из живых или бывших ранее живыми организмов (нефть и нефтепродукты, продукты переработки угля, пищевые продукты, шелк, хлопок, шерсть и т.д.); в-третьих, разнообразные синтетические материалы (пластмассы, краски, лекарства, синтетические волокна, красители, лабораторные и промышленные химические продукты, растворители и т.д.). Химия всех веществ, не содержащих углерода, образует второй большой раздел химии, называемый "неорганическая химия", куда входит также химия самого углерода и некоторых его простых соединений (см. также ХИМИЯ).
Обилие органических соединений представляет собой прямой результат уникальной способности атомов углерода образовывать прочные ковалентные связи друг с другом, формируя углеродные цепи, и с такими элементами, как водород, кислород, азот, фосфор, сера и галогены (фтор, хлор, бром и иод). Каждый углеродный атом способен образовать четыре связи, которые могут быть использованы либо для формирования прямых, разветвленных или замкнутых в кольца цепей с другими углеродными атомами посредством простых, двойных или тройных связей, либо для связывания с другими элементами. Почти все органические соединения содержат также водород, и второе широко используемое определение рассматривает органическую химию как "химию углеводородов (т.е. соединений углерода с водородом) и их производных" (см. также УГЛЕРОД).
Название "органическая" ведет свое происхождение от принятой в начале 19 в. теории, согласно которой химия живых организмов, т.е. "органическая химия", каким-то уникальным образом зависит от присущей всему живому "живой силы" и эту силу якобы невозможно воспроизвести в химической лаборатории. Ошибочность этого представления была показана (1828) немецким химиком Ф.Вёлером, превратившим "неорганическое" вещество цианат аммония в "органическое" соединение мочевину:
Начиная с этого момента органическая химия развивалась в ускоряющемся темпе. Этому способствовали структурные теории таких исследователей, как Ф.Кекуле, который в 1857 установил, что углерод в органических соединениях образует четыре связи, как и в неорганических, а в 1865 предложил структуру, объясняющую необычный характер бензола и других ароматических соединений; Я.Вант-Гофф и Ж.Ле Бель, которые предложили в 1874 тетраэдрическую модель расположения связей вокруг углерода и теорию асимметрического атома углерода; Г.Льюис, который в 1916 выдвинул концепцию ковалентной связи, состоящей из обобществленной пары электронов. Позднее для более тонкой трактовки структуры некоторые исследователи стали привлекать принципы квантовой механики. Среди них был Л.Полинг, развивший в 1930-е годы математическую концепцию резонанса (изменения электронной конфигурации в молекуле). Применяя простые структурные представления, можно подразделить сотни тысяч известных органических соединений на относительно небольшое число классов и предсказать некоторые свойства и стабильность множества еще неизученных веществ.
Для последующего обсуждения будет полезным понимание некоторых основных химических концепций, изложенных в статье ХИМИЯ.
См. также:
ХИМИЯ ОРГАНИЧЕСКАЯ - А. КЛАССЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
ХИМИЯ ОРГАНИЧЕСКАЯ - Б. УГЛЕВОДОРОДЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - В. НАСЫЩЕННЫЕ И НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - Г. СВОЙСТВА
ХИМИЯ ОРГАНИЧЕСКАЯ - Д. ПРАКТИЧЕСКИ ВАЖНЫЕ УГЛЕВОДОРОДЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - Е. БУТАДИЕН И СТИРОЛ
ХИМИЯ ОРГАНИЧЕСКАЯ - Ж. ОРГАНИЧЕСКИЕ ГАЛОГЕНИДЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - З. ПРАКТИЧЕСКИ ВАЖНЫЕ ОРГАНИЧЕСКИЕ ГАЛОГЕНИДЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - И. СПИРТЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - Й. ПРАКТИЧЕСКИ ВАЖНЫЕ СПИРТЫ
ХИМИЯ ОРГАНИЧЕСКАЯ - К. ФЕНОЛЫ