Значение ОПТИЧЕСКАЯ АКТИВНОСТЬ в Большой советской энциклопедии, БСЭ

ОПТИЧЕСКАЯ АКТИВНОСТЬ

активность , способность среды вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Впервые обнаружена в 1811 Д. Ф. Араго в кварце. В 1815 Ж. Б. Био открыл О. а. чистых жидкостей (скипидара), а затем растворов и паров многих, главным образом органических, веществ. Он же установил (см. Био закон ), что: 1) угол j поворота плоскости поляризации линейно зависит от толщины l слоя активного вещества (или его раствора) и концентрации с этого вещества - j [a] lc (коэффициент [a] называется удельной О. а.); 2) поворот в данной среде происходит либо по часовой стрелке (j > 0), либо против неё (j < 0), если смотреть навстречу ходу лучей света. Соответственно оптически-активные вещества , проявляющие естественную О. а. (О. а., не вызываемую наличием внешних полей), разделяют на правовращающие [положительно вращающие, (d), j > 0] и левовращающие [отрицательно вращающие, ( l ), j < 0]. Это условное деление применимо в широких интервалах длин волн излучения. Оно теряет смысл лишь вблизи полос собственного (резонансного) поглощения среды; в 1896 французский учёный Э. Коттон обнаружил, что в одном и том же веществе j имеет различные знаки по разные стороны от полос резонансного поглощения (см. Поглощение света ).

Некоторые вещества оптически активны лишь в кристаллическом состоянии (кварц, киноварь и пр.), так что их О. а. есть свойство кристалла в целом; для них удельная О. а. обозначается просто a и формула Био записывается в виде j a l . Другие вещества активны в любом агрегатном состоянии; это означает, что их О. а. определяется свойствами отдельных молекул. Удельная О. а. зависит не только от рода вещества, но и от агрегатного состояния, температуры, давления, типа растворителя и т.д. Типичные значения [a] в град / дмTг / см 3: 66,473+0,0127 с (раствор сахарозы в воде); 14,83-0,146 с (виннокаменная кислота в воде); v3,068+0,08959 с и v5,7 (яблочная кислота в воде и ацетоне соответственно); v37 (скипидар в воде); 40,9+0,135 с (камфора в этиловом спирте). Здесь с - концентрация растворённого вещества в г на 100 см 3 раствора. Первые две величины верны в интервалах концентраций 0-50, [a] для камфары - в интервале 10-50, остальные - при любой концентрации (если вообще зависят от неё). Эти значения приведены для стандартных условий: длины волны света 589,3 нм ( D -линия натрия) и температуры 20 |С.

От естественной О. а. отличают искусственную, или наведённую, О. а., проявляющуюся лишь при помещении оптически неактивного вещества в магнитное поле ( Фарадея эффект ; см. также Верде постоянная ). Знак вращения в эффекте Фарадея зависит как от магнитных свойств среды (парамагнитна она, диамагнитна или ферромагнитна), так и от того, вдоль поля или против него распространяется излучение. Это связано с особым характером магнитного поля (определяющие его величины являются псевдовекторами, или осевыми векторами ). Если линейно-поляризованный свет, прошедший через слой вещества с естественной О. а., отражается и проходит через тот же слой в обратном направлении, восстанавливается исходная поляризация, тогда как в среде с наведённой О. а. в аналогичном опыте угол поворота удвоится.

Феноменологическую (макроскопическую) теорию О. а. предложил в 1823 О. Ж. Френель , объяснивший О. а. различием преломления показателей среды n + и n vдля право- и левополяризованных по кругу световых волн. (Волну линейно-поляризованного света всегда можно представить как совокупность двух право- и левополяризованных по кругу волн равной интенсивности; см. Поляризация света .) Полученное Френелем выражение имеет вид j pT l /l( n +v n v), где l - длина волны излучения в вакууме; т. о., j может быть значительным даже при очень малом различии n + и n v, если l , как это обычно, бывает много больше l. Этим объясняется чрезвычайно высокая чувствительность методов, основанных на измерении О. а. (например, при определении различий в показателе преломления в 10 000 раз точнее самых точных измерений с помощью интерферометров ).

Развитие теории О. а. тесно связано с изучением её дисперсии - зависимости a (или [a]) от l. Ещё Био установил, что в исследованных им случаях a тем меньше, чем больше l (j ~ lv2). Такая дисперсия характерна для т. н. нормальной О. а. - вдали от длин волн l0, на которых в оптически-активном веществе происходит резонансное поглощение. Эме Коттон, изучавший О. а. для излучений с l, близкими к l0, обнаружил аномальную О. а. - увеличение a с ростом l, а также различие поглощения показателей при этих длинах волн для право- и левополяризованных по кругу лучей - т. н. круговой дихроизм, или эффект Коттона. Вследствие кругового дихроизма вблизи полос собственного поглощения не только поворачивается плоскость поляризации света, исходно поляризованного линейно, но и одновременно этот свет превращается в эллиптически-поляризованный.

Исследования О. а. показали, что для объяснения О. а. существен учёт изменения поля световой волны на расстояниях порядка размеров а молекулы (иона) вещества. (При описании многих др. оптических явлений таким изменением можно пренебречь, т.к. а /l ~ 10v3, но как раз этот параметр определяет различие между n+ и nv .) Одним из решающих этапов выяснения природы О. а. явилось открытие Л. Пастером в 1848 оптических антиподов-веществ, неразличимых по всем физическим (и многим химическим) свойствам, кроме направления вращения плоскости поляризации (отличаясь знаками, удельные О. а. двух антиподов равны по абсолютной величине). Оказалось, что оптические антиподы (кристаллические решётки в кристаллах, отдельные молекулы в аморфных, жидких и газообразных оптическиактивных веществах - такие молекулы называются оптическими изомерами) являются зеркальными отражениями друг друга, так что никакими перемещениями и поворотами в пространстве не могут быть совмещены один с другим при полном тождестве образующих их элементов. Для молекул каждого из оптических изомеров характерна пространственная асимметрия - они не имеют плоскости зеркальной симметрии и центра инверсии (см. Изомерия , Стереохимия , Энантиоморфизм ).

Теория О. а. молекулярных паров в рамках классической электронной теории (см. Лоренца - Максвелла уравнения ) была разработана в 1915 М. Борном и независимо шведским физиком К. В. Озееном, которые показали, что наряду с асимметрией молекул следует учитывать несинфазность микротоков, наведённых полем световой волны в разных частях молекул (при всей малости a/l). Квантовую теорию О. а. паров построил в 1928 бельгийский учёный Л. Розенфельд. И в этой, более строгой с позиций современной науки теории рассматриваются процессы, связанные с конечным размером молекул (происходящие на расстояниях ~ а ). Для объяснения О. а. оказалось необходимым учитывать как электрический, так и магнитный дипольные моменты, наводимые в молекуле полем проходящей волны. Теория О. а. молекулярных сред, активных лишь в кристаллической фазе, тесно связана с теорией экситонов , т.к. О. а. этих кристаллов определяется характером волн поляризации в них. О теории наведённой О. а. см. Магнитооптика , Фарадея эффект . Современные теории О. а. качественно правильно описывают это явление, однако количественная теория дисперсии О. а. сталкивается со значительными трудностями в связи со сложностью изучаемых объектов.

О. а. обнаруживают широкие классы веществ, в особенности органических. Характер дисперсии О. а. весьма чувствителен к различным факторам, определяющим внутри- и межмолекулярные взаимодействия. Поэтому методы, основанные на измерении О. а., широко используются в физических, химических, биологических и др. научных исследованиях и в промышленности (см. Поляриметрия , Сахариметрия ).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Волькенштейн М. В., Молекулярная оптика, М. - Л., 1951; Mathieu J. P. Activit_e optique naturelle, в кн.: Encyclopedia of Physics (Handbuch des Physik), v. 28, В. - [а. о.], 1957.

С. Г. Пржибельский.

Большая советская энциклопедия, БСЭ.