пограничная область оптики и кристаллофизики, охватывающая изучение законов распространения света в кристаллах. Характерными для кристаллов явлениями, изучаемыми К., являются: двойное лучепреломление , поляризация света , вращение плоскости поляризации , плеохроизм и др. Явление двойного лучепреломления впервые наблюдалось в кристаллах исландского шпата датским учёным Э. Бартолином в 1669. Эта дата считается началом возникновения К. Вопросы поглощения и излучения света кристаллами изучаются в спектроскопии кристаллов. Влияние электрических и магнитных полей на оптические свойства кристаллов исследуются в электрооптике и магнитооптике , опирающихся на основные законы К.
Т. к. период кристаллической решётки ( ~ 10 - ) во много раз меньше длины волны видимого света (4000-7000 - ), кристалл можно рассматривать как однородную, но анизотропную среду (см. Кристаллофизика ) . Оптическая анизотропия кристаллов обусловлена анизотропией поля сил взаимодействия частиц. Характер этого поля связан с симметрией кристаллов . Все кристаллы, кроме кристаллов кубических сингоний, оптически анизотропны.
Оптическая анизотропия прозрачных немагнитных кристаллов обусловлена анизотропией диэлектрической проницаемости e. В изотропных средах вектор электрической индукции D связан с вектором электрического поля Е соотношением D e Е, где e - скалярная величина, в случае переменных полей зависящая от их частоты (см. Диэлектрики ).Т. о ., в изотропных средах векторы D и Е имеют одинаковое направление. В кристаллах направления векторов D и Е не совпадают друг с другом, а соотношение между величинами D и Е имеет более сложный вид, т. к. диэлектрическая проницаемость e, описываемая тензором, зависит от направления в кристалле. Следствием этого и является наблюдаемая анизотропия оптических свойств кристаллов, в частности зависимость скорости распространения волны u и преломления показателя n от направления. Зависимость компонент тензора диэлектрической проницаемости от частоты волны объясняет дисперсию оптических свойств кристаллов.
Зависимость диэлектрической проницаемости e и, следовательно, показателя преломления n от направления может быть представлена графически. Если из произвольной точки О кристалла провести по всем направлениям радиусы-векторы r, модули которых r n , где e - диэлектрическая проницаемость в направлении r, то концы векторов r будут лежать на поверхности эллипсоида, называемого оптической индикатрисой ( рис. 1 ). Оси симметрии этого эллипсоида определяют три взаимно перпендикулярных главных направления в кристалле. В прямоугольной декартовой системе координат, оси которой совпадают с главными направлениями, уравнение оптической индикатрисы имеет вид
, (1)
где nx, ny и nz - значения n вдоль главных направлений (главные значения тензора диэлектрической проницаемости и n ) . Оптической осью кристалла называют прямую, проходящую через данную точку О кристалла перпендикулярно к плоскости кругового сечения оптической индикатрисы.
В случае оптически изотропных кубических кристаллов e не зависит от направления, и оптического индикатриса превращается в сферу с радиусом r n . В кристаллах средних сингоний (тригональной, тетрагональной и гексагональной) одно из главных направлений совпадает с главной осью симметрии кристалла. В этих кристаллах оптическая индикатриса - эллипсоид вращения, и кристаллы имеют только одну оптическую ось, совпадающую с осью вращения эллипсоида. Такие кристаллы называют одноосными. Одноосный кристалл называется оптически положительным (+), если его оптическая ось совпадает с большей осью оптической индикатрисы (эллипсоид вытянут вдоль оси вращения), и оптически отрицательным (-), если эллипсоид сжат вдоль оси вращения. Кристаллы низших сингоний (ромбической, моноклинной и триклинной) называются двухосными. Их оптическая индикатриса - трёхосный эллипсоид, имеющий 2 круговых сечения и 2 оптических оси ( рис. 1 ).
Вследствие несовпадения направлений векторов D и Е поляризованная плоская монохроматическая волна в кристалле характеризуется двумя тройками взаимно перпендикулярных векторов d, Н, u и Е, Н, u' ( рис. 2 ). Скорость u' совпадает по направлению с Пойнтинга вектором S и равна скорости переноса энергии волной. Её называют лучевой скоростью волны. Скорость u называют нормальной скоростью волны. Она равна скорости распространения фазы и фронта волны по направлению нормали N к фронту. Величины u и u' связаны соотношением
,
где a - угол между векторами D и Е.
Нормальная и лучевая скорости волны u определяются из уравнения Френеля - основного уравнения К.:
(2)
Здесь Nx, Ny и Nz - проекции вектора нормали N на главные направления кристалла; ux c/nx; uy c/ny; uz c/nz главные фазовые скорости волны; с - скорость света в вакууме; nx, ny, nz - главные показатели преломления кристалла.
Т. к. уравнение Френеля - квадратное относительно u, то в любом направлении N имеются 2 значения нормальной скорости волны u1 и u2, совпадающие только в направлении оптических осей кристаллов. Если из точки О откладывать по всем направлениям N векторы соответствующих им нормальных скоростей u, то концы векторов будут лежать на поверхности, называемой поверхностью нормалей. Это - двухполостная поверхность; каждая полость соответствует одному значению u для данного направления N. В случае одноосного кристалла одна из поверхностей - сфера, вторая - овалоид, который касается сферы в 2 точках пересечения её с оптической осью. У двухосных кристаллов эти поверхности пересекаются в 4 точках, лежащих на 2 оптических осях (бинормалях).
Аналогично, геометрическое место точек, удалённых от точки О на расстояние u', называется лучевой поверхностью, или поверхностью волны. Это - волновая поверхность для волн,. распространяющихся в кристалле от точечного источника, расположенного в точке О . Это также - двухполостная поверхность. В одноосных кристаллах одна из поверхностей - сфера, вторая - эллипсоид вращения вокруг оптической оси oz. Сфера и эллипсоид касаются друг друга в точках их пересечения с оптической осью. В положительных кристаллах эллипсоид вписан в сферу ( рис. 3 , а) , в отрицательных - сфера вписана в эллипсоид ( рис. 3 , б). В двухосных кристаллах поверхности пересекаются друг с другом в 4 точках, попарно лежащих на 2 прямых, пересекающихся в точке О (бирадиали).
Т. о., в кристаллах в произвольном направлении N могут распространяться две плоские волны, поляризованные в 2 взаимно перпендикулярных плоскостях. Направления векторов D1 и D2 этих волн совпадают с осями эллипса, получающегося при пересечении оптической индикатрисы с плоскостью, перпендикулярной N и проходящей через точку О . Нормальные скорости этих волн: u1 c/n1 и u 2 c/n2 . Векторы E1 и E2 этих волн также лежат в 2 перпендикулярных плоскостях, причём им соответствуют 2 лучевых вектора S1 и S2 и 2 значения лучевой скорости u1 u'1/cos a и u2 u2/cos a . Аналогично, для заданного направления луча S возможны 2 направления колебаний вектора Е ( E1 | E2 ) , соответствующие 2 значениям лучевой скорости u'1 и u'2.
Зависимость лучевой скорости плоской волны, распространяющейся в кристалле, от направления распространения и характера поляризации волны приводит к тому, что световые лучи в кристалле раздваиваются. В одноосном кристалле один из преломленных лучей подчиняется обычным законам преломления и поэтому называются обыкновенным О , а второй - не подчиняется этим законам (не лежит в плоскости падения) и называется необыкновенным е (см. Двойное лучепреломление ) . В двухосном кристалле оба луча необыкновенные.
Две возникающие при преломлении световые волны при распространении внутри кристалла приобретают за счёт различия показателей преломления и геометрического пути разность хода, оставаясь когерентными (см. Когерентность ).С помощью поляризационного устройства можно свести направления колебаний в вышедших из кристалла волнах в одну плоскость и наблюдать их интерференцию. Интерференция линейно поляризованного белого света проявляется в виде окраски кристалла, зависящей от приобретённой этим пучком разности хода (см. Интерференция света ). Иногда наблюдаются характерные фигуры интерференции (коноскопические фигуры), вид которых зависит от ориентации кристалла ( рис. 4 ).
В кристаллах некоторых классов симметрии, помимо двойного лучепреломления, возможно вращение плоскости поляризации. В таких кристаллах вдоль каждого направления могут распространяться две эллиптически поляризованные волны (с противоположными направлениями обхода), каждая со своим показателем преломления. Только в направлении оптической оси поляризация волн оказывается круговой, что приводит к вращению плоскости поляризации падающего на кристалл линейно поляризованного света.
В случае сильно поглощающих кристаллов линейно поляризованная волна, распространяющаяся в кристалле, расщепляется на 2 эллиптически поляризованные волны, но с одинаковым направлением обхода. В таких кристаллах наблюдается различное поглощение волн, обладающих разной поляризацией, и др. особенности.
Каждый кристалл обладает присущим ему комплексом кристаллооптических свойств, по которым он может быть идентифицирован. Важнейшими из них для одноосных кристаллов являются показатели преломления обыкновенной no и необыкновенной ne волн; разность между ними D n (величина двойного лучепреломления), а также зависимость перечисленных характеристик от длины волны (различного рода дисперсии). Двухосные кристаллы характеризуются более сложным комплексом свойств. В прикладной К., задачей которой является анализ минералов и горных пород, разработаны различные методы измерения этих величин для различных препаратов минералов в виде порошков, тонких пластин (шлифов). Главные из них: иммерсионный метод измерения показателей преломления с помощью специальных жидкостей или сплавов с известными показателями преломления, фёдоровский метод для определения ориентации индикатрисы с помощью столика, поворачивающего кристалл вокруг различных осей (см. Фёдорова столик). Большинство кристаллооптических измерений проводится с помощью поляризационного микроскопа . Существуют справочники, в которых собраны сведения об оптических свойствах большинства известных минералов (см. Минералогия ).
Большое значение методы К. имеют в физических исследованиях (например, для получения поляризованного света, анализа эллиптически поляризованного света, в различных приборах для управления световым пучком), в химической технологии (анализ веществ, оптическая активность).
Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1970; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Федоров ф. И., Оптика анизотропных сред, Минск, 1958; Шубников А. В., Основы оптической кристаллографии, М., 1958; Белянкин Д. С., Петров В. П., Кристаллооптика, 4 изд., М., 1951; Татарский В. Б., Кристаллооптика и иммерсионный метод исследования минералов, М., 1965; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965.
В. Б. Татарский. Б. Н. Гречушников.