? М. называется вообще наибольшая величина из рассматриваемых величин. В математическом анализе этим словом обозначается то значение функции, начиная от которого она как при увеличении независимых переменных, так и при их уменьшении убывает. Максимальное значение функции более всех соседних ее значений, но оно может быть менее других ее максимальных значений; наибольшее из всех максимальных значений называется М.-максиморум (maximum maximorum). Рассмотрим функцию одного переменного x. Из определения математического максимума следует, что если с увеличением x функция сначала увеличивается, а затем начинает убывать, то она имеет М. именно в том месте (при том значении переменного x ), в котором прибывание ее переходит в убывание. Известно, что первая производная функции положительна, если функция прибывает с увеличением переменного, и отрицательна, если функция с увеличением переменного убывает. От положительного значения к отрицательному производная должна перейти через нуль. Следовательно, при том значении переменного, которому соответствует М. функции, производная ее должна быть равна нулю. Это дает возможность определять те значения x , при которых функция достигает М.; вставив же это значение x в функцию, получим величину максимального значения функции. Необходимо, однако, заметить, что если при увеличении переменного функция сначала уменьшается, а затем начинает увеличиваться, то производная, переходя от отрицательного к положительному значению, тоже должна перейти через нуль, между тем как при этом функция достигает не максимального, а минимального значения (наименьшего сравнительно с соседними). Поэтому надо установить критериум для отличия М. от минимума. Но не трудно видеть, что, переходя от положительного значения к отрицательному, что соответствует М., производная уменьшается и, следовательно, производная производной, т. е. вторая производная, отрицательна; при переходе же от отрицательного к положительному значению, что соответствует минимуму, вторая производная вследствие возрастания первой производной положительна. Итак, если требуется найти М. функции f(x), то определяют соответствующие значения x из уравнения f'(x) = 0. Вставляя эти значения в f(x), получим ее М., если f"(x) < 0 и минимумы, если f"(x) > 0. Подобного же рода рассуждениями руководствуются и при нахождении М. и минимумов функций многих переменных. Весьма многие задачи приводятся к нахождению М. и минимумов (см. Минимум).
Н. Делоне.