Значение УРАВНЕНИЕ СОСТОЯНИЯ в Большой советской энциклопедии, БСЭ

Что такое УРАВНЕНИЕ СОСТОЯНИЯ

состояния, связывает давление р, объём V и температуру Т физически однородной системы в состоянии равновесия термодинамического : f ( p, V, Т )0. Это уравнение называется термическим У. с., в отличие от калорического У. с., определяющего внутреннюю энергию системы U как функцию какого-либо двух из трёх параметров р, V, Т. Термическое У. с. позволяет выразить давление через объём и температуру р p ( V, Т ) и определить элементарную работу d A p d V при бесконечно малом расширении системы d V . У. с. является необходимым дополнением к термодинамическим законам, которое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики , а определяется или рассчитывается теоретически на основе представлений о строении вещества методами статистической физики . Из первого начала термодинамики следует лишь существование калорического У. с., а из второго начала термодинамики v связь между термическим и калорическим У. с. , откуда вытекает, что для идеального газа внутренняя энергия не зависит от объёма 0 . Термодинамика показывает, что для вычисления как термического, так и калорического У. с., достаточно знать любой из потенциалов термодинамических в виде функции своих параметров. Например, если известна Гельмгольцева энергия F как функция Т и V, то У. с. находят дифференцированием:

, .

Примерами У. с. для газов может служить Клапейрона уравнение для идеального газа p u RT, где R v газовая постоянная , u v объём 1 моля газа;

Ван-дер-Ваальса уравнение , где а и b v постоянные, зависящие от природы газа и учитывающие влияние сил притяжения между молекулами и конечность из объёма, вириальное У. с. для неидеального pu / RT 1 + B ( T ) / u + С ( Т )/ u2 + .., где В ( Т ) , С ( Т ) ... v 2-й, 3-й и т.д. вириальные коэффициенты, зависящие от сил взаимодействия между молекулами (см. Газы ) . Это уравнение является наиболее надёжным и теоретически обоснованным У. с. для газов и позволяет объяснить многочисленные экспериментальные результаты на основании простых моделей межмолекулярного взаимодействия . Были предложены также различные эмпирические У. с., основанные на экспериментальных данных о теплоёмкости и сжимаемости. У. с. неидеальных газов указывает на существование критической точки (с параметрами p k , V k , T k) , в которой газообразная и жидкая фазы становятся идентичными (см. Критическое состояние ) . Если У. с. представить в виде приведенного У. с., т. е. в безразмерных переменных p/p k , V/V k , T/T k , то при не слишком низких температурах это уравнение мало меняется для различных веществ (закон соответственных состояний ) .

Для равновесного излучения, или фотонного газа, У. с. определяется Планка законом излучения для средней плотности энергии.

Для жидкостей из-за сложности учёта всех особенностей взаимодействия молекул пока не удалось теоретически получить общее У. с. Уравнение Ван-дер-Ваальса хотя и применяют для качественной оценки поведения жидкостей, но оно по существу неприменимо ниже критической точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкого состояния типа теории свободного объёма или дырочной теории (см. Жидкость ) . Знание распределения вероятности взаимного расположения молекул (парной корреляционной функции) принципиально позволяет вычислить У. с. жидкости, но эта задача очень сложна и полностью ещё не решена даже с помощью вычислительных машин.

Для твёрдых тел термическое У. с. определяет зависимость модулей упругости от температуры и давления. Оно может быть получено на основании теории теплового движения в кристаллах, рассматривающей фононы и их взаимодействие, но пока общего У. с. для твёрдых тел не найдено.

Для магнитных сред элементарная работа при намагничивании равна d A - Н d М, где М v магнитный момент, Н v напряжённость магнитного поля. Следовательно, зависимость М М ( Н, Т ) представляет собой магнитное У. с.

Для электрически поляризуемых сред элементарная работа при поляризации равна d A - Е d Р где Р - поляризация, Е - напряжённость электрического поля, следовательно, У. с. имеет вид Р ( Е, Т ) .

Лит.: Хилл Т., Статистическая механика, пер. с англ., М., 1960; Вукалович М. П., Новиков И. И., Уравнение состояния реальных газов, М. v Л., 1948; Мейсон Э., Сперлинг Т., Вириальное уравнение состояния, пер. с англ., М., 1972; Лейбфрид Г., Людвиг В., Теория ангармонических эффектов в кристаллах, пер. с англ., М., 1963. См. также лит. при статьях Статистическая физика и Термодинамика .

Д. Н. Зубарев.

Большая советская энциклопедия, БСЭ.