света в атмосфере [позднелат. refractio - преломление, от лат. refractus - преломленный (refringo - ломаю, преломляю)], атмосферно-оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся смещении удалённых объектов, а иногда и в кажущемся изменении их формы. Некоторые частные проявления Р., как, например, сплюснутая форма дисков Солнца и Луны у горизонта, мерцание звёзд, дрожание далёких земных предметов в жаркий день, были замечены уже в древности. К. Птолемею (2 в. н. э.) был известен также и основной эффект Р., состоящий в том, что небесные светила видны несколько выше их действительного положений. Первую таблицу Р. составил Тихо Браге в 16 в.; попытки построить теорию Р. предпринимались И. Кеплером (1604), но лишь И. Ньютон в 1694 разработал строгую теорию Р.
Вследствие того, что атмосфера является средой оптически неоднородной, лучи света распространяются в ней не прямолинейно, а по некоторой кривой линии. Наблюдатель видит, т. о., объекты не в направлении их действительного положения, а вдоль касательной к траектории луча в точке наблюдения. Различают астрономическую Р. - явление преломления лучей, идущих от небесного светила к наблюдателю, и геодезическую (земную) Р. - явление преломления лучей, идущих от предметов, находящихся в атмосфере (см. Рефракция геодезическая).
В случае астрономической рефракции, когда луч, идущий от светила, проходит через всю толщу атмосферы, в которой плотность воздуха, а вместе с ней и показатель преломления в общем увеличивается на пути луча, его траектория всегда обращена выпуклостью к зениту (см. рис. ); касательная AS' к ней проходит выше направления AS к действительному месту светила. Разность между истинным z и измененным рефракцией z- зенитными расстояниями называется углом рефракции r, или просто рефракцией. Р. равна нулю в зените и возрастает с увеличением зенитного расстояния. Простейшая теория, в которой не учитывается кривизна слоев атмосферы равной плотности, приводит к формуле:
,
где коэффициент 60,2- называется постоянной Р.; В - атмосферное давление (в мм ртутного столба), t - температура воздуха (|С). Формулой можно пользоваться для светил с z < 70|. При точных расчётах принимают во внимание влияние на величину Р. не только температуры, давления, но и влажности воздуха, а также других метеорологических элементов нижнего слоя воздуха, для чего служат специальные таблицы.
Точные теории Р., принимающие в расчёт сферичность Земли и атмосферных слоев, приводят к значениям Р. у горизонта, превышающим 35- (см. табл.).
Астрономическая рефракция при температуре воздуха + 10|С и атмосферном давлении 760 мм. рт. см.
Зенитное расстояние, z
Рефракция, r
Зенитное расстояние, z
Рефракция, r
0|
10
20
30
35
40
45
50
55
60
62
64
66
68
70
0-0-
0 10
0 21
0 34
0 41
0 49
0 58
1 09
1 23
1 41
1 49
1 59
2 10
2 23
2 38
72|
74
76
78
80
81
82
83
84
85
86
87
88
89
90
2- 57-
3 20
3 49
4 27
5 18
5 52
6 33
7 24
8 28
9 52
11 45
14 22
18 18
24 37
35 24
У самого горизонта Р. r растет с увеличением z столь быстро, что нижний край дисков Солнца и Луны бывает приподнят на несколько минут дуги больше, чем верхний, и диск приобретает сплюснутую форму. Вследствие Р. всякое светило, в том числе Солнце, появляется над горизонтом ещё до истинного восхода и остаётся видимым некоторое время после истинного захода. Быстрые турбулентные перемещения масс воздуха различной плотности порождают непрерывные колебания величины Р., вследствие чего изображения звёзд в телескопах дрожат или превращаются в размытое бурлящее световое пятно; для невооружённого глаза это воспринимается как мерцание звёзд. Это сильно затрудняет наблюдения небесных светил и заставляет выбирать для астрономических обсерваторий пункты с подходящими атмосферными условиями.
Вследствие различия Р. для лучей с разной длиной волны, особенно большого вблизи горизонта, у диска восходящего или заходящего Солнца может наблюдаться цветная кайма (сверху сине-зелёная, снизу красная), а также явление зелёного луча; звёзды же растягиваются в вертикальный спектр до 40| длиной. Для относительно близких небесных тел (Луны, искусственных спутников Земли) величина угла Р. отличается от вычисленного для звёзд, находящихся на том же зенитном расстоянии; этот эффект называется рефракционным параллаксом.
Явление Р. осложняется наклоном слоев воздуха одинаковой плотности к горизонту, что вызывает боковую Р., при которой объект смещается не только по высоте, но и по азимуту, хотя и незначительно. Знание Р. имеет важное значение в астрометрии, так как положения небесных светил, определяемые из астрономических наблюдений, всегда бывают искажены преломлением в атмосфере, что требует введения соответствующих поправок.
Из др. астрономических явлений, связанных с Р., представляет интерес освещение диска Луны красноватым светом во время полных лунных затмений. Такое освещение создаётся солнечными лучами, проходящими нижние слои воздуха насквозь и вследствие этого испытывающими двойную Р., что даёт угол отклонения до 70- и обеспечивает освещение всего сечения конуса земной тени на расстоянии Луны. Р. в атмосферах других планет наблюдаются при покрытиях звёзд диском планеты; звезда при этом кажется несколько смещенной. Эффектная форма Р. наблюдается в атмосфере планеты Венеры при прохождениях её перед солнечным диском, когда преломленные солнечные лучи образуют огненный ободок вокруг части диска планеты, находящейся вне Солнца. Это явление впервые описано М. В. Ломоносовым в 1761.
Р. испытывают также и радиоволны при прохождении через слои атмосферы с различными диэлектрическими проницаемостями или с различной степенью ионизации. Р. радиоволн в ионосфере является причиной распространения коротких волн на большие расстояния (см. Радиоастрономия ).
Лит.: Казаков С. А., Курс сферической астрономии, 2 изд., М. - Л., 1940; Блажко С. Н., Курс сферической астрономии, М. - Л., 1948; Загребин Д. В., Введение в астрометрию, М. - Л., 1966.