Значение ОТРАЖЕНИЕ СВЕТА в Большой советской энциклопедии, БСЭ

Что такое ОТРАЖЕНИЕ СВЕТА

света , явление, заключающееся в том, что при падении света ( оптического излучения ) из одной среды на границу её раздела со 2-й средой взаимодействие света с веществом приводит к появлению световой волны, распространяющейся от границы раздела 'обратно' в 1-ю среду. (При этом по крайней мере 1-я среда должна быть прозрачна для падающего и отражаемого излучения.) Несамосветящиеся тела становятся видимыми вследствие О. с. от их поверхностей.

Пространственное распределение интенсивности отражённого света определяется отношением размеров неровностей поверхности (границы раздела) к длине волны l падающего излучения. Если неровности малы по сравнению с l, имеет место правильное, или зеркальное, О. с. Когда размеры неровностей соизмеримы с l или превышают её (шероховатые поверхности, матовые поверхности ) и расположение неровностей беспорядочно, О. с. диффузно. Возможно также смешанное О. с., при котором часть падающего излучения отражается зеркально, а часть - диффузно. Если же неровности с размерами ~ l и более расположены закономерно (регулярно), распределение отражённого света имеет особый характер, близкий к наблюдаемому при О. с. от дифракционной решётки . О. с. тесно связано с явлениями преломления света (при полной или неполной прозрачности отражающей среды) и поглощения света (при её неполной прозрачности или непрозрачности).

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом ) зависит от j и поляризации падающего пучка лучей (см. Поляризация света ), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика ) выражают Френеля формулы . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен ( n2 - n1 )2/( n2 + n1 )2; в очень важном частном случае нормального падения из воздуха или стекла на границу их раздела ( n возд ' 1,0; n cт 1,5) он составляет ' 4%.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно ( р -компонента) и перпендикулярно ( s -компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j , равных так называемому углу Брюстера (см. Брюстера закон ), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения ( р -составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р -составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов . При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p , при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s -составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды ( n2 < n1 ) при sin j ³ n2 / n1 является полным внутренним отражением , при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света. Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах ).

Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s -составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика , Металлооптика ).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом . Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом )визуально воспринимается как окраска тел.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ.,2 изд., М., 1973; Дитчбёрн Р., Физическая оптика, пер. с англ., М., 1965; Миннарт М., Свет и цвет в природе, пер. с англ., М., 1958; Бреховских Л. М., Волны в слоистых средах, М., 1957; Толанский С., Удивительные свойства света, пер. с англ., М., 1969.

Н. А. Войшвилло.

Большая советская энциклопедия, БСЭ.