Значение слова МНОГОЧЛЕН в Большой советской энциклопедии, БСЭ

Что такое МНОГОЧЛЕН

полином, выражение вида

A xk yl-..wm + Bxnyp-..wq + - + Dxrts-..wt ,

где х, у, ..., w - переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней - целые неотрицательные числа) - постоянные. Отдельные слагаемые вида Ахkyl-..wm называются членами М. Порядок членов, а также порядок множителей в каждом члене можно менять произвольно; точно так же можно вводить или опускать члены с нулевыми коэффициентами, а в каждом отдельном члене - степени с нулевыми показателями. В случае, когда М. имеет один, два или три члена, его называют одночленом, двучленом или трёхчленом. Два члена М. называются подобными, если в них показатели степеней при одинаковых переменных попарно равны. Подобные между собой члены

А'хkyl-..wm, B'xkyl-..wm, -.., D'xkyl-..wm

можно заменить одним (приведение подобных членов). Два М. называются равными, если после приведения подобных все члены с отличными от нуля коэффициентами оказываются попарно одинаковыми (но, может быть, записанными в разном порядке), а также если все коэффициенты этих М. оказываются равными нулю. В последнем случае М. называется тождественным нулём и обозначают знаком 0 . М. от одного переменного х можно всегда записать в виде

P ( x ) a 0 xn + a 1 xn -1 + ... + an -1 x + an ,

где a 0 , a 1 ,..., a n - коэффициенты.

Сумму показателей степеней какого-либо члена М. называют степенью этого члена. Если М. не тождественный нуль, то среди членов с отличными от нуля коэффициентами (предполагается, что все подобные члены приведены) имеются один или несколько наибольшей степени; эту наибольшую степень называют степенью М. Тождественный нуль не имеет степени. М. нулевой степени сводится к одному члену А (постоянному, не равному нулю). Примеры: xyz + х + у + z есть многочлен третьей степени, 2 x + у - z + 1 есть многочлен первой степени (линейный М.), 5 x 2- 2 x 2 - 3 х 2 не имеет степени, т. к. это тождественный нуль. М., все члены которого одинаковой степени, называется однородным М., или формой ; формы первой, второй и третьей степеней называются линейными, квадратичными, кубичными, а по числу переменных (два, три) двоичными (бинарными), тройничными (тернарными) (например, x 2 + y 2 + z 2 - ху - yz - xz есть тройничная квадратичная форма).

Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) - кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0 .

Если для двух многочленов Р ( х ) и Q ( x ) можно найти такой многочлен R ( x ), что Р QR , то говорят, что Р делится на Q; Q называется делителем, a R - частным. Если Р не делится на Q , то можно найти такие многочлены Р ( х ) и S ( x ), что Р QR + S , причём степень S ( x ) меньше степени Q ( x ).

Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q , т. е. такой делитель Р и Q , который делится на любой общий делитель этих многочленов (см. Евклида алгоритм ) . М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае - неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R , a P на R не делится, то тогда Q должно делиться на R . Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x 4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя

в поле действительных чисел и на четыре множителя в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел - на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x 3 + yz 2 + z 3 неприводим в любом числовом поле.

Если переменным х, у, ..., w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций , где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций .

К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники. Способы такого выражения исследуются в специальных разделах математики (см. Приближение и интерполирование функций , Наименьших квадратов метод ) .

В элементарной алгебре многочленом иногда называются такие алгебраические выражения, в которых последним действием является сложение или вычитание, например

Лит. : Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мишина А. П., Проскуряков И. В., Высшая алгебра, 2 изд., М., 1965.

А. И. Маркушевич.

Большая советская энциклопедия, БСЭ.