внедрение, ионное легирование, введение посторонних атомов внутрь твёрдого тела путём бомбардировки его поверхности ионами. Средняя глубина проникновения ионов в мишень тем больше, чем больше энергия ионов (ионы с энергиями ~ 10-100 кэв проникают на глубину 0,01-1 мкм ). При бомбардировке монокристаллов глубина проникновения частиц вдоль определённых кристаллографических направлений резко возрастает (см. Каналирование заряженных частиц ).
При интенсивной бомбардировке на И. в. влияет катодное распыление мишени, а также диффузия внедрённых ионов и их выделение с поверхности. Существует максимально возможная концентрация внедрённых ионов, которая зависит от вида иона и мишени, а также от температуры мишени.
И. в. наиболее широко используется при введении примесей в полупроводниковые монокристаллы для создания требуемой примесной электропроводности полупроводника . Следующий за этим отжиг проводится для уничтожения образовавшихся дефектов в кристалле , а также для того, чтобы внедрённые ионы заняли определённые места в узлах кристаллической решётки. И. в. позволяет вводить в разные полупроводниковые материалы точно дозированные количества почти любых химических элементов. При этом можно управлять распределением внедрённых ионов по глубине путём изменения энергии ионов, интенсивности и направления ионного пучка относительно кристаллографических осей. И. в. позволяет создать в полупроводниковом кристалле электронно-дырочный переход на малой глубине, что увеличивает, например, предельную частоту транзисторов .
Лит.: Мейер Дж., Эриксон А., Девис Дж., Ионное легирование полупроводников (кремний, германий), пер. с англ., М., [в печати]; Легирование полупроводников ионным внедрением, пер. с англ., М., 1971.
Ю. В. Мартыненко.