Значение КРИСТАЛЛЫ ЖИДКИЕ в Энциклопедическом словаре Брокгауза и Евфрона

КРИСТАЛЛЫ ЖИДКИЕ

(текучие).—Существуют вещества, которые способны при нагревании переходить из обыкновенного твердого состояния в видоизменение, обладающее еще некоторыми свойствами кристаллических тел, но которое в то же время свободно течет и образует капли подобно воде или любой другой жидкости. При дальнейшем нагревании новое видоизменение переходит в обыкновенное жидкое состояние. Явление открыто (Рейнитцер, 1888) на бензойном эфире холестерина (см.) и состоит в том, что прекрасно кристаллизующийся эфир переходит при 145,5° в мутную жидкость (?), внезапно просветляющуюся при 178°. При охлаждении ниже 178° прозрачная жидкость мутится, при чем наблюдается быстро проходящее окрашивание её в фиолетовый, а затем синий цвет \[явление столь красиво и характерно при пропионовом эфире холестерина, что принято физиологами, как качественная реакция на холестерин\]; после масса становится молочной, оставаясь вполне жидкой; наконец, при дальнейшем охлаждении снова появляется синее (фиолетовое) окрашивание и сейчас же наступает кристаллизация. Леманн показал, что молочная масса, несмотря на жидкое состояние, обладает еще определенным строением (кристаллическим?); её анизотропия сказывается в двойном лучепреломлении (см.), благодаря чему она кажется светлой между скрещенными "Николями" (см.). Он назвал ее текучими кристаллами (fliessende Krystalle) и считает до сих пор по существу отличной от жидких К. (fl?ssige Krystalle), Розебом же ("Heterogene Gleichgewichte", Брауншв., 1-ая ч., 142, \[1901\]) удерживает для всех относящихся сюда тел первое название. В настоящее время явление, кроме бензойного эфира холестерина, наблюдено еще на многих телах, как показывает табличка: b85_017-0.jpg и т. д. (список см.—Schenck, "Krystallinische Fl?ssigkeiten u. Fl?ssige Krystalle", Лпц., 8, \[1905\]). Как видно, текучие К. существуют в определенных температурных границах (наиболее широких для n.-оксианизолфенетола); нижней—является температура образования твердых кристаллов, верхней—температура образования изотропной жидкости; так как превращения наблюдаются при одних и тех же температурах, независимо от того, идем ли мы в сторону повышающихся, или же падающих температур, то обе границы характеризуют энантиотропные превращения (см.) \[Монотропия уксусного эфира холестерина (Шенк) не может, кажется, считаться твердо установленной\]. С увеличением давления, как показал Гулетт, возрастают и температуры превращений и разность между ними, как, напр., видно из его данных для:

-

| Давления. | 1 атм. | 100 атм. | 200 атм. | 300 атм. |

| - - - - - |

| | в К. жидкие | 118,3о | 121,5о | 124,7о | 127,95о |

| | - - - - - |

| Темп. превращ. n.- | в изотр. | 135,9о | 140,8о | 145,58о | 150,45о |

| азоксианизола: | жидкость | | | | |

| | - - - - - |

| | Разность | 17,6о | 19,3о | 20,86о | 22,50о |

| - - - - - - |

| | в К. жидкие | 138,5о | 142,2о | 145,85о | 149,65о |

| | - - - - - |

| Темп. превращ. n.- | в изотр. | 168,1о | 172,8о | 177,5о | 182,30о |

| азоксифенетола: | жидкость | | | | |

| | - - - - - |

| | Разность | 29,6о | 30,6о | 31,65о | 32,65о |

- а, след., при высоких давлениях область жидких К. расширяется. Изучение внутреннего трения (Шенк и Эйхвальд) жидких К. и образующихся из них изотропных жидкостей неожиданно показало, что в большинстве случаев анизотропная жидкость значительно подвижнее, чем изотропная, хотя область первой лежит при более низких температурах. Внутреннее трение мутной жидкости падает с возвышением темп. и мгновенно возрастает при темп. её просветления; наибольшая разность наблюдается для n.-метоксикоричной кислоты, где коэфф. трения меняется при темп. просветления с 91 до 159 \[Коэфф. внутр. трения воды при 0° принят = 100.\]; только для этилового эфира n.-азоксибензойной кислоты и для бензойного эфира холестерина анизотропная фаза обладает сравнительно с изотропной большим внутр. трением. Вообще же внутр. трение анизотропных жидкостей варьирует в широких пределах, как видно из таблички:

-

| | Велич. внутр. трения, наблюд. при |

| | возрастающих темпер. |

| Название | - |

| | Для анизотропной | Для изотропной |

| | жидкости | жидкости |

| - - - |

| Бензойный эфир холестерина | 893—621 | 421—219 |

| - - - |

| Этиловый эфир n.- | 856—472 | 357—270 |

| азоксибензойной кисл. | | |

| - - - |

| n.-метоксикоричная кислота | 106— 91 | 159—117 |

| - - - |

| n.-азоксифенетол | 79—66 | 95—75 |

- Первые два тела по консистенции близки к оливковому маслу, а n.-азоксифенетол значительно подвижнее воды. До сих пор не произведено определений уд. веса твердых тел, переходящих в жидкие К.; несомненно, что переход сопровождается значительным изменением уд. веса; замечательно, что и переход анизотропной жидкости в изотропную связан тоже в большинстве случаев с внезапным падением уд. веса; так для n.-азоксианизола (Эйхвальд) уд. вес (при 134,7°) = 1,1494, а при 135,5° — 1,1453, а для n.-метоксикоричной кислоты (Эйхвальд) уд. вес при 185,0° — 1,0933, а при 186,5° — 1,0881 (подробные данные см. Schenck, l. с.); превращение связано потому с увеличением объема; для бензойного эфира холестерина оно, впрочем, незначительно. Что касается теплот превращения, то как образование анизотропной, так и изотропной жидкости, оба — сопровождаются поглощением тепла (скрытого тепла превращения); но первый процесс по величине теплового эффекта отвечает обыкновенному скрытому теплу плавления (по Бюнеру, для n.-азоксианизола — 29,3 кал. и для n.-азоксианизолфенетола — 16,91 кал.), второй же необыкновенно мал (для n.-азоксианизола он, по Бюнеру = 0,68 кал., а для n.-азоксианизолфенетола = 1,07 кал.). В связи с этим первый переход легко наблюдается с помощью кривых охлаждения, между тем как второй — не удается уловить даже с помощью кривых охлаждения, вычерчиваемых саморегистрирующим пирометром Курнакова (Ротарский и Жемчужный, 1904); Де-Коку ("Z. phys. Ch.", 1904) удалось, впрочем, на кривой охлаждения подметить переход изотропной n.-метоксикоричной кисл. в анизотропную (тепло превращения по его вычислению = 3,5 кал. \[Для этилового эфира n.-азоксибензойной кисл. тепло превращения изотропного в анизотропное видоизменение по вычислению Де-Кока = 16,6 кал. Число это не проверено опытом.\]. О сложных явлениях, наблюдаемых для понижения температуры превращения жидких К. под влиянием растворения в них разных веществ см. Де-Кок, 1. с. Здесь можно только отметить, что по способности образовывать однородные растворы с различными телами жидкие К. приближаются к типичным жидкостям, а не к твердым телам, которые, если и растворяют иногда не изоморфные с ними тела, то в необыкновенно малом количестве. О поверхностном натяжении жидких К. см. Schenck, "Untersuch, ?. d. kryst. Fl?ssigkeiten", Марбург, 1897 и 1. с. О замечательно красивых и разнообразных оптических явлениях см. O. Lehmann, "Fl?ssige Krystalle sowie Plastizit?t von Krystallen im allgemeinen etc.", Лпц., 1904. Необыкновенно своеобразные явления, описанные выше, вызвали сильное сомнение в однородности жидких К., а именно Тамманн предположил, что как мутность, так и остальные явления сводятся на небольшую примесь к первоначальным кристаллам какого-нибудь другого тела, равномерно в них распределенного и образующего при плавлении второй жидкий слой, несмешивающийся с первым во всех отношениях, а равномерно с ним эмульсированный; точка просветления по этому взгляду отвечает критической температуре растворимости (см.) двух жидких слоев. Гипотеза эта вызвала многочисленные работы для её проверки и пока не получила опытного подтверждения, хотя и представляется очень вероятной. А именно, однородность жидких К. показана Де-Коком (1. с.) на перегнанной n.-метоксикоричной кисл.\[перегоняется под давл. 1 мм. при 179°. Темп. анизотропного плавления 170°, а изотропного — 185,7°\], Шенком — на невозможности их разделения на два слоя с помощью энергичного центрифугирования \[по Гинзбергу („Журн. Русск. Хим. Общ.", 1904), якобы удается подметить тут некоторое деление\], и невозможностью просветления их с помощью электрического тока высокого напряжения (Bredig и Жуковский, 1904). Таким образом, приходится пока признавать их химическую однородность, а равно и кристаллическое их сложение. А тогда возникает вопрос, каким образом кристаллическое тело может образовывать капли и течь — вопрос тем более законный, что согласно Линку, Гиршвальду (см. Lehmann, "Molekularph.", I), Ле-Шателье и Тамманну в последнее время было принято считать, что слово "кристаллический" есть синоним твердого тела (см. Гомогенные системы, доп.), а "аморфный" — синоним жидкого состояния. На это Леманн (1. с.) отвечает указанием на пластичность металлов под высоким давлением (Треска и Спринг), достигающую у золота, несмотря на его кристаллическое сложение, замечательной степени, на сравнительную мягкость свинца и на почти настоящую текучесть кристаллич. натрия при обыкн. темп., благодаря чему так легко готовится натриевая проволока, на мягкость и пластичность кристаллов белого фосфора, кристаллов воска (сложная смесь, см. Воск), парафина, камфары; а так как связь пластичности с температурой для нас неизвестна и мы не имеем оснований думать, чтобы в указанных телах пластичность достигла своего предела при обыкн. темп., то мыслимо, что существуют и кристаллич. тела, не отличающиеся по пластичности от жидкостей, а таковыми и являются жидкие К. Считать аморфные тела жидкими, а кристаллические твердыми, по Леманну, нельзя уже потому, что тогда пришлось бы признать стекло прибора, в котором находится легко подвижная анизотропная жидкость (напр. n.-азоксифенетол), за жидкость, а жидкость в нем находящуюся — за твердое тело. Таким образом, дать определения твердого и жидкого состояний — мы пока не можем. А. И. Г.

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.