Значение ГОЛОМОРФНАЯ ФУНКЦИЯ в Энциклопедическом словаре Брокгауза и Евфрона

Что такое ГОЛОМОРФНАЯ ФУНКЦИЯ

функция f(х) комплексного переменного х называется Г., если она не обращается в бесконечность ни при каких конечных значениях независимого переменного х. Простейшая функция, обладающая таким свойством, есть функция целая Ахn + Вхn-1 + Схn-2 +.. . + Нх + К; отсюда и происходит название Г. функции (???? ?елый, ????? ?ид). Противополагаются Г. функциям — функции мероморфные (?????, дробь), имеющие характер дробных функций (Ахn + Вхn-1 + Схn-2 +.. . + Нх + К)/(А1хm + В1хm-1 + С1хm-2 +.. . + Н1х + К1), могущих обращаться в бесконечность при тех значениях х, при которых обращается в нуль знаменательА1хm + В1хm-1 + С1хm-2 +.. . + Н1х + К1.Как пример функций Г. можно указать функцию показательную ех и функции тригонометрические sinx, cosx. — Функция tgx и функции эллиптические sinamx, cosamx суть функции мероморфные, ибо, напр., tgx обращается в бесконечность при х = (2n + 1)(?/2).

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.