Значение ГАРМОНИЧЕСКИЕ ДВИЖЕНИЯ в Энциклопедическом словаре Брокгауза и Евфрона

ГАРМОНИЧЕСКИЕ ДВИЖЕНИЯ

простые и составные. Представим себе, что по кругу радиуса а (на черт. 1 изображен круг, имеющий центр в О) движется точка N с постоянной скоростью в сторону, указанную стрелкой, причем полный оборот по окружности она совершает в течение времени Т. b15_132-2.jpg Чертеж 1. Чертеж 2.Проекция M точки N на направление прямой Х1ОХ будет тогда совершать вдоль по ней, вверх и вниз, колебательное движение, называемое простым гармоническим движением и выражаемое следующим уравнением:x = asin(2?t/T) (I)если считать время от того момента, когда точка N была в С, а положительные расстояния х по прямой X1OX считать по направлению ОХ.Если же считать время от какого-либо другого момента, то это же движение выразится уравнением:x = asin(2?t/T-?) (II)где е есть фаза, или эпоха, гармонического колебания, а — амплитуда и Т — период, или продолжительность, двойного качания точки М.На черт. 2 движение, выражаемое уравнением (I), изображено графически. От точки А по прямой At откладываются длины, пропорциональные временам t; так, длина АР изображает время Т, а длина Ар — время, в течение которого движущаяся по кругу точка перешла из С в N на черт. 1. Затем от каждой точки, такой как р, откладывают ординату рК, равную соответственному расстоянию ОМ. Построенная кривая будет синусоида; на черт. 2 изображена только часть ее, соответствующая одному полному периоду и представляющая одну волну кривой.Два или несколько прямолинейных гармонических движений по одной и той же прямой, около того же центра, того же периода, но различных амплитуд и разных фаз, соединяются в одно простое гармоническое движение того же периода. Если а1, а2, а3,... суть амплитуды составляющих гармонических движений, а ?1, ?2, ?3,... — их фазы, то квадрат амплитуды составного простого гармонического движения будет равен:?2 + ?2, a тангенс фазы этого движения равен отношению ? к ?, где ? и ? суть следующие суммы:? = a1cos?1 + a2cos?2 +.... ? = a1sin?1 + a2sin?2 +.... Из соединения нескольких простых Г. движений различного периода по одной и той же прямой получаются сложные прямолинейные гармонические движения, а из соединения двух простых Г. движений, совершающихся по двум взаимно перпендикулярным или наклонным одна к другой прямым, получаются криволинейные Г. движения. На черт. 3 графически представлено сложное прямолинейное Г. движение, выражаемое уравнением:x = sin?t + sin2?t, b15_133-1.jpg Чертеж 3а на черт. 4 — другое сложное Г. движение, выражаемое уравнением:x = sin2?t + sin(3?t + 3?/8), где ? = 2?/T. b15_133-2.jpg Черт. 4При соединении двух простых Г. движений различных соизмеримых периодов движущаяся точка описывает кривые линии, называемые кривыми Лиссажу. Полную теорию Г. движений можно найти в "Treatise on natural philosophy by Thomson and Tait" (Vol. I. Part I, kinematics).Гармоническое отношение. Понятие о Г. отношении введено древними геометрами. Папп в своей книге "Математический сборник" говорит, что три числа находятся в Г. отношении, если отношение первого к третьему равно отношению разности первого без второго и третьего; такое отношение названо Г. потому, что оно встречалось в теории музыки древних. b15_133-3.jpg Две точки a и а1 делят длину bc в Г. отношении, если длины ас, аа1 и ab находятся в Г. отношении, т. е.:ac/ab = (ac — aa1)/(aa1 — ab), или ac/ab = -(ac — aa1)/(ab — aa1) (III)илиab/ac : a1b/a1c = — 1.Гармоническому отношению между тремя длинами ас, аа1, ab можно придать еще следующий вид:2/aa1 = 1/ab + 1/acчто нетрудно получить из (III). Г. отношение играет важную роль в высшей геометрии; см. Chasles "Trait? de g?ometrie sup?rieure".Гармонические сферические функции. Под именем spherical harmonie functions английские физико-математики подразумевают однородные функции V от х, y, z, удовлетворяющие дифференциальному уравнению:d2V/dx2 + d2V/dy2 + d2V/dz2 = 0 См. Сферические функции.Д. Б. Гармонические движения отдельной частицы происходят под влиянием силы, направленной к положению равновесия частицы и изменяющейся прямо пропорционально расстоянию ее от него. Подобного рода силы возникают при растяжении, сжатии, сгибании упругих тел, при отклонении гибкой натянутой струны из ее положения равновесия и во многих подобных случаях. Поэтому гармоническое движение встречается в природе очень часто: все звуковые колебания, каковы колебания камертонов, струн и т. п. представляют гармоническое движение. Качания маятника при малых размахах, сравнительно с длиной его, происходят по тем же законам. Вследствие пропорциональности движущей силы расстояниям тела от положения равновесия гармоническое движение обладает замечательным свойством — изохронностью колебаний, т. е. продолжительность периода движения одинакова и при больших и при малых амплитудах колебания. По этой причине одно и то же звучащее тело (камертон, струна и т. п.) издают всегда тон одной и той же высоты, хотя и различной силы (тихий или громкий) в зависимости от силы удара. Продолжительность периода гармонического колебания (Т) зависит исключительно от ускорения (k) на расстоянии единицы длины (1 см) от положения равновесия движущихся частиц, именноT = 2? : ?kУскорение же движения пропорционально двигающей силе и обратно пропорционально двигаемой массе. Этим и пользуются на практике: при настройке музыкальных инструментов изменяют натяжение струн; для изменения скорости хода карманных часов изменяют длину пружинки маятника и т. д.Ф. д. Ф.

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.