одно из основных понятий математики; зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, 4…. Задачи измерения длин, площадей и т. п., а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательных числах возникло у индийцев в 6-11 вв. Потребность в точном выражении отношений величин (напр., отношение диагонали квадрата к его стороне) привела к введению иррациональных чисел, которые выражаются через рациональные числа лишь приближенно; рациональные и иррациональные числа составляют совокупность действительных чисел. Окончательное развитие теория действительных чисел получила лишь во 2-й пол. 19 в. в связи с потребностями математического анализа. В связи с решением квадратных и кубических уравнений в 16 в. были введены комплексные числа.
-
грамматическая категория, указывающая на количество предметов, обозначаемых данным словом или словом, находящимся с данным в отношениях синтаксического согласования. Число единственное, множественное; в некоторых языках - двойственное, тройственное. Выражается обычно формами словоизменения или словообразования.
-
«е» , то же, что неперово число.