Значение ФУНДАМЕНТАЛЬНАЯ ДЛИНА в Большой советской энциклопедии, БСЭ

Что такое ФУНДАМЕНТАЛЬНАЯ ДЛИНА

длина, элементарная длина, гипотетическая универсальная постоянная размерности длины, определяющая пределы применимости фундаментальных физических представлений - теории относительности, квантовой теории, физического принципа причинности. Через Ф. д. l выражаются масштабы областей пространства-времени и энергии-импульса (размеры x < l , интервалы времени t < l/c , энергии Е > (, где с - скорость света, - постоянная Планка), в которых можно ожидать новых явлений, выходящих за рамки существующих представлений. Если это ожидание оправдается, в пользу чего свидетельствуют трудности и непоследовательности современной теории, то предстоит ещё одно радикальное преобразование физики, сопоставимое по своим последствиям с созданием теории относительности или квантовой теории. Соответственно, Ф. д. войдёт как существенный элемент в будущую последовательную теорию элементарных частиц, играя роль третьей (помимо c и ) фундаментальной размерной константы физики, ограничивающей пределы применимости старых представлений.

Как претенденты на роль Ф. д. в разное время обсуждались: комптоновская длина волны электрона le ' 10-11 см (электромагнитное взаимодействие), пимезона - lp ' 10-13 см и нуклона - lN ' 10-14 см (сильное взаимодействие), характерная длина слабого взаимодействия - примерно 10-16 см и гравитационная длина (т. н. планковская длина) - порядка 10-33 см . Сам факт отождествления Ф. д. с одной из перечисленных величин имел бы огромное значение, указав, с каким типом взаимодействия будет связано появление новых физических представлений. К 1977 экспериментально установлено, что Ф. д. не превышает 10-15 см ; имеются также аргументы (основанные на измерениях с помощью Мёссбауэра эффекта ) в пользу ещё меньшей верхней границы Ф. д. - порядка 10-20 см . Поэтому величины, связанные с электромагнитным, сильным и, возможно, слабым взаимодействиями уже не могут претендовать на роль ф. д. Весьма вероятно, что истинной Ф. д. физики окажется гравитационная длина (в пользу этого говорит, например, универсальность тяготения , которому, в отличие от других взаимодействий, подвержены все без исключения структурные единицы материи). В этом случае теорию элементарных частиц следует строить на основе общей теории относительности .

Экспериментальный путь определения Ф. д. - сравнение с опытом результатов расчёта различных физических эффектов, выполненного в соответствии с существующей теорией. Такое сравнение (во всех случаях, когда оно могло быть проведено) до сих пор не показало каких-либо расхождений. Поэтому эксперимент даёт пока лишь верхнюю границу Ф. д. Для этой цели используются прежде всего опыты при высоких энергиях, выполняемые на ускорителях заряженных частиц и характеризующиеся относительно невысокой точностью. К ним относятся опыты по проверке дисперсионных соотношений (см. Сильные взаимодействия ) для рассеяния пи-мезонов на нуклонах и т.п., электродинамики (рождение пар, рассеяние электронов на электронах и др.). К другому типу относятся прецизионные статические эксперименты: измерения аномального магнитного момента электрона и мюона , лэмбовского сдвига уровней и т.д.; определённые сведения о Ф. д. даёт, как упоминалось, эффект Мёссбауэра. Обсуждаются предложения по использованию информации, идущей от космических объектов - космических лучей сверхвысоких энергий ( > 1019 эв ), пульсаров , квазаров , 'чёрных дыр' ; если Ф. д. существует, то излучение некоторых из этих объектов обладало бы необычными, с точки зрения современных представлений, свойствами.

Ведётся разработка моделей теории, содержащей Ф. д. К их числу относятся варианты нелокальной квантовой теории поля, теория квантованного пространства-времени и др. Такие теоретические схемы, помимо их самостоятельной ценности, используются при планировании и обработке результатов экспериментов по определению Ф. д. См. также Микропричинности условие , Нелокальная квантовая теория поля , Причинности принцип , Квантование пространства-времени и лит. при этих статьях.

Лит.: Тамм И. Е., Собр. научных трудов, т. 2, М., 1975; Марков М. А., Гипероны и К-мезоны, М., 1958; его же, О модели и протяженной частицы в общей теории относительности, в сборнике: Нелокальные и нелинейные и ненормируемые теории поля. Материалы 2 совещания по нелокальным теориям поля, Дубна, 1970; Киржниц Д. А., Проблема фундаментальной длины, 'Природа', 1973, | 1; его же, The quest for а fundamental length, 'Soviet Science Review', Sept. 1971, с. 297.

Д. А. Киржниц.

Большая советская энциклопедия, БСЭ.