излучение , электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие Т. и. включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин синхротронное излучение .
Согласно классическом электродинамике, которая достаточно хорошо описывает основные закономерности Т. и., его интенсивность пропорциональна квадрату ускорения заряженной частицы (см. Излучение ). Так как ускорение обратно пропорционально массе m частицы, то в одном и том же поле Т. и. легчайшей заряженной частицы - электрона будет, например, в миллионы раз мощнее излучения протона. Поэтому чаще всего наблюдается и практически используется Т. и., возникающее при рассеянии электронов на электростатическом поле атомных ядер и электронов; такова, в частности, природа рентгеновских лучей в рентгеновских трубках и гамма-излучения , испускаемого быстрыми электронами при прохождении через вещество.
Спектр фотонов Т. и. непрерывен и обрывается при максимально возможной энергии, равной начальной энергии электрона. Интенсивность Т. и. пропорциональна квадрату атомного номера Z ядра, в поле которого тормозится электрон (по закону Кулона сила f взаимодействия электрона с ядром пропорциональна заряду ядра Ze , где е - элементарный заряд, а ускорение определяется вторым законом Ньютона: а f/m ). При движении в веществе электрон с энергией выше некоторой критической энергии E 0 тормозится преимущественно за счёт Т. и. (при меньших энергиях преобладают потери на возбуждение и ионизацию атомов). Например, для свинца E 0 ' 10 Мэв , для воздуха - 200 Мэв .
Рассеяние электрона в электрическом поле атомного ядра и атомных электронов является чисто электромагнитным процессом, и его наиболее точное описание даёт квантовая электродинамика (см. Квантовая теория поля ). При не очень высоких энергиях электрона хорошее согласие теории с экспериментом достигается при учёте одного только кулоновского поля ядра. Согласно квантовой электродинамике, в поле ядра существует определённая вероятность квантового перехода электрона в состояние с меньшей энергией с излучением, как правило, одного фотона (вероятность излучения большего числа фотонов мала). Поскольку энергия фотона E g равна разности начальной и конечной энергии электрона, спектр Т. и. ( рис. 1 ) имеет резкую границу при энергии фотона., равной начальной кинетической энергии электрона T e. Так как вероятность излучения в элементарном акте рассеяния пропорциональна Z 2, то для увеличения выхода фотонов Т. и. в электронных пучках используются мишени из веществ с большими Z (свинец, платина и т.д.). Угловое распределение Т. и. существенно зависит от T e: в нерелятивистском случае ( T e £ mec2 ; где me - масса электрона, с - скорость света) Т. и. подобно излучению электрического диполя , перпендикулярного к плоскости траектории электрона. При высоких энергиях ( T e > > mec2 ) Т. и. направлено вперёд по движению электрона и концентрируется в пределах конуса с угловым раствором порядка q ' mec2 / T e рад ( рис. 2 ); это свойство используется для получения интенсивных пучков фотонов высокой энергии (g-квантов) на электронных ускорителях. Т. и. является частично поляризованным.
Дальнейшее уточнение теории Т. и. достигается учётом экранирования кулоновского поля ядра атомными электронами. Поправки на экранирование, существенные при T e > > mec2 и E g < < T e, приводят к снижению вероятности Т. и. (таккак при этом эффективное поле меньше кулоновского поля ядра).
На свойства Т. и. при прохождении электронов через вещество влияют эффекты, связанные со структурой среды и многократным рассеянием электронов. При T e > > 100 Мэв многократное рассеяние сказывается ещё и в том, что за время, необходимое для излучения фотона, электрон проходит большое расстояние и может испытать столкновения с другими атомами. В целом многократное рассеяние при больших энергиях приводит в аморфных веществах к снижению интенсивности и расширению пучка Т. и. При прохождении электронов больших энергий через кристаллы возникают интерференционные явления - появляются резкие максимумы в спектре Т. и. и увеличивается степень поляризации ( рис. 3 ).
Причиной значительного Т. и. может быть тепловое движение в горячей разреженной плазме (с температурой 105-106 К и выше). Элементарные акты Т. и., называются в этом случае тепловым, обусловлены столкновениями заряженных частиц, из которых состоит плазма. Космическое рентгеновское излучение, наблюдение которого стало возможным с появлением искусственных спутников Земли, частично (а излучение некоторых дискретных рентгеновских источников, возможно, полностью) является, по-видимому, тепловым Т. и.
Тормозное рентгеновское и гамма-излучение широко применяются в технике, медицине, в исследованиях по биологии, химии и физике.
Лит.: Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Байер В. Н., Катков В. М., Фадин В. С., Излучение релятивистских электронов, М., 1973; Богданкевич О. В., Николаев Ф. А., Работа с пучком тормозного излучения, М,, 1964: Соколов А. А., Тернов И. М., Релятивистский электрон, М.,1974.
Э. А. Тагиров.