Значение слова СТАТИКА в Большой советской энциклопедии, БСЭ

Что такое СТАТИКА

(от греч. statike - учение о весе, о равновесии), раздел механики, посвященный изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитической С. лежит возможных перемещении принцип , дающий общие условия равновесия любой механической системы. Геометрическая С. основывается на т. н. аксиомах С., выражающих свойства сил, действующих на материальную частицу и абсолютно твёрдое тело, т. е. тело, расстояния между точками которого всегда остаются неизменными. Основные аксиомы С. устанавливают, что: 1) две силы, действующие на материальную частицу, имеют равнодействующую, определяемую по правилу параллелограмма сил ; 2) две силы, действующие на материальную частицу (или абсолютно твёрдое тело), уравновешиваются только тогда, когда они одинаковы по численной величине и направлены вдоль одной прямой в противоположные стороны; 3) прибавление или вычитание уравновешенных сил не изменяет действия данной системы на твёрдое тело. При этом уравновешенными называются силы, под действием которых свободное твёрдое тело может находиться в покое по отношению к инерциальной системе отсчёта .

Методами геометрической С. изучается С. твёрдого тела. При этом рассматриваются решения следующих двух типов задач: 1) приведение систем сил, действующих на твёрдое тело, к простейшему виду; 2) определение условий равновесия сил, действующих на твёрдое тело.

Необходимые и достаточные условия равновесия упруго деформируемых тел, а также жидкостей и газов рассматриваются соответственно в упругости теории , гидростатике и аэростатике .

К основным понятиям С. относится понятие о силе , о моменте силы относительно центра и относительно оси и о паре сил . Сложение сил и их моментов относительно центра производится по правилу сложения векторов. Величина R , равная геометрической сумме всех сил Fk , действующих на данное тело, называется главным вектором этой системы сил, а величина М0 , равная геометрической сумме моментов то ( Рк ) этих сил относительно центра О, называется главным моментом системы сил относительно указанного центра:

R ,.

Решение задачи приведения сил даёт следующий основной результат: любая система сил, действующих на абсолютно твёрдое тело, эквивалентна одной силе, равной главному вектору R системы и приложенной в произвольно выбранном центре О, и одной паре сил с моментом, равным главному моменту M0 системы относительно этого центра. Отсюда следует, что любую систему действующих на твёрдое тело сил можно задать её главным вектором и главным моментом. Этим результатом широко пользуются на практике, когда задают, например, аэродинамические силы, действующие на самолёт или ракету, усилия в сечении балки и др.

Простейший вид, к которому можно привести данную систему сил, зависит от значений R и M0 . Если R 0, а M0 ¹ 0, то данная система сил заменяется одной парой с моментом M0 . Если же R ¹ 0, а M0 0 или M0 ¹ 0, но векторы R и M 0 взаимно перпендикулярны (что, например, всегда имеет место для параллельных сил или сил, лежащих на одной плоскости), то система сил приводится к равнодействующей, равной r . Наконец, когда R ¹ 0, M0 ¹ 0 и эти векторы не взаимно перпендикулярны, система сил заменяется совокупным действием силы и пары (или двумя скрещивающимися силами) и равнодействующей не имеет.

Для равновесия любой системы сил, действующих на твёрдое тело, необходимо и достаточно обращение величины R и M0 в нуль. Вытекающие отсюда уравнения, которым должны удовлетворять действующие на тело силы при равновесии, см. в ст. Равновесие механической системы . Равновесие системы тел изучают, составляя уравнения равновесия для каждого тела в отдельности и учитывая закон равенства действия и противодействия. Если общее число реакций связей окажется больше числа уравнений, содержащих эти реакции, то соответствующая система тел является статически неопределимой; для изучения её равновесия надо учесть деформации тел.

Графические методы решения задач С. основываются на построении многоугольника сил и верёвочного многоугольника .

Лит.: Пуансо Л., Начала статики, П., 1920; Жуковский Н. Е., Теоретическая механика, 2 изд., М. - Л., 1952; Воронков И. М., Курс теоретической механики, 9 изд., М., 1961; Тарг С. М., Краткий курс теоретической механики, 9 изд., М., 1974; см. также лит. при ст. Механика .

С. М. Тарг.

Большая советская энциклопедия, БСЭ.