астрономия, раздел астрономии, в котором тела Солнечной системы исследуются с помощью радиоволн, посланных передатчиком и отражённых этими телами (см. Планетный радиолокатор ). Методы Р. а. используются для решения задач астрометрии и астрофизики.
Применение радиолокации дало возможность измерять расстояния до небесных объектов по времени, в течение которого радиосигнал достигает небесного тела и возвращается обратно. Точность этих измерений ( < 1 км ) значительно превышает точность определения расстояний на основе астрометрических наблюдений, в связи с чем они применяются для уточнения значений фундаментальных астрономических постоянных, параметров движения тел Солнечной системы, их размеров. Радиолокация ближайших планет способствует большей точности выведения космических аппаратов к планетам, посадки их в заданных районах поверхности планет.
Измеренное радиолокационным путём расстояние до ближайшей к Земле точки поверхности планеты О ( рис. 1 ) в сочетании с расстоянием до центра масс планеты С , положение которого определяется законами небесной механики, позволяет вычислить расстояние этой точки от центра планеты и таким образом - высоту её над некоторой средней поверхностью.
При радиолокации планет в периоды их прохождения за Солнцем было обнаружено запаздывание момента прихода эхо-сигнала, обусловленное уменьшением скорости распространения электромагнитных волн в поле тяготения Солнца, в соответствии с теорией тяготения Эйнштейна. Обнаружение этого эффекта послужило одной из экспериментальных проверок общей теории относительности.
Решение многих астрофизических задач в Р. а. базируется на исследовании смещения и расширения спектральной линии эхо-сигнала вследствие Доплера эффекта , обусловленного движением объекта, отражающего радиосигнал, относительно наблюдателя. Этим методом изучается движение метеоров в атмосфере Земли, движение ионизованных образований в солнечной короне, вращение планет. Крупнейшим достижением Р. а. явилось определение периода и направления вращения Венеры и Меркурия.
Высокая проникающая способность радиоволн позволила преодолеть плотный облачный слой Венеры, непрозрачный для оптических лучей, и получить первые сведения о её поверхности. Измерения интенсивности отражённого сигнала, которая зависит от величины коэффициента отражения материала поверхности, показали, что поверхность Венеры по электрическим свойствам близка к скальным породам на силикатной основе, которые широко распространены на Земле. В центре диска Венеры наблюдается яркий блик, а края тонут в тени, как у зеркально гладкой сферы. Это явление имеет место на радиоволнах и у др. планет с твёрдой поверхностью (в видимых лучах это явление не наблюдается). Юпитер и Сатурн, имеющие мощную газовую оболочку, не дают заметного отражения. В то же время кольца Сатурна оказались хорошим отражателем и рассеивают радиоволны подобно тому, как облака рассеивают видимый свет.
В Р. а. разработан метод получения изображения поверхности планет, основанный на выделении из всего отражённого планетой эхо-сигнала частей, соответствующих небольшим участкам поверхности планеты. В основе этого метода лежит анализ распределения интенсивностей эхо-сигнала по времени прихода на приёмную аппаратуру и по доплеровским смещениям частоты: время возвращения сигнала и смещение частоты зависят от расстояния до того или иного участка поверхности планеты и от лучевой скорости этого участка относительно антенны радиолокатора и закономерно изменяются от точки к точке. Точки, лежащие на некоторой окружности 1 , плоскость которой перпендикулярна лучу зрения ( рис. 1 ), находятся на одинаковом расстоянии от антенны радиолокатора; эта окружность является линией равных запаздываний эхо-сигнала. Точки, лежащие на окружности 2, плоскость которой параллельна лучу зрения и оси вращения планеты PP', имеют по отношению к антенне радиолокатора одинаковые лучевые скорости; эта окружность является линией равных доплеровских смещений. Рассчитав на основании известного движения планеты запаздывание и доплеровское смещение для точек окружностей 1 и 2, по этим величинам из суммарного эхо-сигнала выделяют сигналы, отражённые участком поверхности вблизи точки В, лежащей на пересечении окружностей, и измеряют их интенсивность. Разделение сигналов, отражённых точками В и B', для которых расстояние и лучевая скорость одинаковы, осуществляется за счёт пространственной избирательности антенны или радиоинтерферометра.
На рис. 2 (А) представлено изображение участка Луны, полученное этим методом (Массачусетсский технологический институт, США). Качество изображения мало уступает фотографическому снимку, сделанному с Земли с помощью оптического телескопа. Отражённый сигнал принимался одновременно двумя антеннами, что позволило измерить по разности фаз принятых сигналов отклонение лунной поверхности в каждой точке от некоторой средней поверхности. Измеренное отклонение высот показано на рис. 2 (В), причём тёмным изображены более низкие места, а светлым - возвышенные. Применение этого метода особенно перспективно для Венеры, поверхность которой недоступна прямому фотографированию. К 1974 получено изображение небольшого участка поверхности Венеры, на котором заметны кратеры.
Если при радиолокации планет и Луны изучаются радиоволны, отражённые их твёрдой поверхностью, то при исследовании Солнца принимается эхо-сигнал, отражённый ионизованным газом солнечной короны. С помощью радиолокации в солнечной короне обнаружены образования, движущиеся со скоростями до 200 км/сек как к периферии, так и к центру Солнца. При радиолокации метеоров радиосигнал отражается протяжённым ионизованным следом, возникающим при входе частиц в земную атмосферу.
Радиолокация метеоров и Луны была начата в 40-х гг. 20 в. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). Основная трудность радиолокационных наблюдений состоит в том, что интенсивность принимаемых сигналов убывает пропорционально расстоянию до исследуемого объекта в четвёртой степени. Это ограничивает возможности радиолокации пределами Солнечной системы.
Лит.: Котельников В. А. [и др.], Успехи планетной радиолокации, 'Природа', 1964, | 9; Шапиро И., Радиолокационные наблюдения планет, пер. с англ., 'Успехи физических наук', 1969, т. 99, в. 2; Дубинский Б. А., Слыш В. И., Радиоастрономия, М., 1973; Radar astronomy, ed. by J. V. Evans, N. Y. [a. o.], [1968].
Б. А. Нубийский, О. Н. Ржига.