Значение ПОЛОЖИТЕЛЬНО-ОПРЕДЕЛЁННАЯ ФОРМА в Большой советской энциклопедии, БСЭ

Что такое ПОЛОЖИТЕЛЬНО-ОПРЕДЕЛЁННАЯ ФОРМА

форма , выражение вида

aikxixk,

где aik aki, принимающее неотрицательные значения при любых действительных значениях x1, х2,..., xn и обращающееся в нуль лишь при x1 х2 ... xn 0 . Т. о., П.-о. ф. есть квадратичная форма специального типа. Любая П.-о. ф. приводится с помощью линейного преобразования к виду

x2i

Для того чтобы

aikxixk

была П.-о. ф. необходимо и достаточно, чтобы D1 > 0, -, D n > 0, где

В любой аффинной системе координат расстояние точки от начала координат выражается П.-о. ф. от координат точки. Форма

,

(где - число, комплексно сопряжённое с xk, см. Комплексные числа ) такая, что aik и f ³ 0 для всех значений x1, х2,..., xn и f 0 лишь при x1 х2 ... xn 0 , называется эрмитовой П.- о. ф.

С понятием П.-о. ф. связаны также понятия: 1) положительно-определённой матрицы || aik || - такой матрицы , что

aik x i x k

есть эрмитова П.-о. ф.;

2) положительно-определённого ядра - такой функции К ( х, у ) , что

для любой функции x( х )с интегрируемым квадратом; 3) положительно-определённой функции - такой функции f ( x ) , что ядро К ( х, у ) f ( x - y ) является положительно-определённым. Класс непрерывных положительно-определённых функций f ( x ) c f (0)1 совпадает с классом характеристических функций законов распределения случайных величин.

Большая советская энциклопедия, БСЭ.