Значение ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА в Большой советской энциклопедии, БСЭ

Что такое ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА

эксперимента, раздел математической статистики , изучающий рациональную организацию измерений, подверженных случайным ошибкам. Обычно рассматривается следующая схема П. э. Со случайными ошибками измеряется функция f (q, x ), зависящая от неизвестных параметров (вектора q) и от переменных x, которые по выбору экспериментатора могут принимать значения из некоторого допустимого множества X. Целью эксперимента является обычно либо оценка всех или некоторых параметров q или их функций, либо проверка некоторых гипотез о параметрах q. Исходя из цели эксперимента, формулируется критерий оптимальности плана эксперимента. Под планом эксперимента понимается совокупность значений, задаваемых переменным х в эксперименте. Как правило, оценки параметров q ищут по наименьших квадратов методу , а гипотезы о параметрах q проверяют с помощью F -критерия Фишера (см. Дисперсионный анализ ) ввиду оптимальных свойств этих методов. В обоих случаях при этом оказывается естественным выбирать в качестве критерия оптимальности плана с заданным числом экспериментов некоторую функцию от дисперсий и коэффициентов корреляции оценок методом наименьших квадратов. Отметим, что в случае, когда f (q , x ) линейно зависит от q, оптимальный план часто можно построить до проведения эксперимента, в других случаях уточнение плана эксперимента происходит по ходу эксперимента.

Для иллюстрации рассмотрим определение весов q1, q2, q3 трёх грузов на весах с двумя чашками, если результат m- го эксперимента есть разность веса содержимого второй и первой чашки плюс случайная ошибка å т со средним 0 и дисперсией s2 , т. е.

,

если i -й груз был на kim -й чашке в m -м эксперименте, и xiт 0, если i -й груз не взвешивался в m -м эксперименте. Взвесив каждый груз отдельно п раз ( 3n экспериментов), мы оценим его вес по методу наименьших квадратов величиной

с дисперсией s2 / n. При n 8 той же точности мы достигнем после взвешивания по одному разу всех 8 различных комбинаций грузов, в которых каждый из них лежит либо на одной, либо на другой чашке, причём оценка по методу наименьших квадратов даётся формулой

i 1, 2, 3 .

Начало П. э. положили труды английского статистика Р. Фишера (1935), подчеркнувшего, что рациональное П. э. даёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. Можно выделить следующие направления П. э.

Исторически первое из них, факторное, было связано с агробиологическими применениями дисперсионного анализа, что нашло отражение в сохранившейся терминологии. Здесь функция f (q , х ) зависит от вектора х переменных (факторов) с конечным числом возможных значений и характеризует сравнительный эффект значений каждого фактора и комбинаций разных факторов. Алгебраическими и комбинаторными методами были построены интуитивно привлекательные планы, одновременно и сбалансированным образом изучающие влияние по возможности большого числа факторов. Впоследствии было доказано, что построенные планы оптимизируют некоторые естественные характеристики оценок метода наименьших квадратов.

Следующим под влиянием приложений в химии и технике развивалось П. э. по поиску оптимальных условий протекания того или иного процесса. По существу эти методы являются модификацией обычных численных методов поиска экстремума с учётом случайных ошибок измерений.

Специфическими методами обладает планирование отсеивающих экспериментов, в которых нужно выделить те компоненты вектора х, которые сильнее всего влияют на функцию f (s , x ) , что важно на начальной стадии исследования, когда вектор х имеет большую размерность.

В 60-х гг. 20 в. сложилась современная теория П. э. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей. Разработаны также итерационные алгоритмы П. э., дающие во многих случаях удовлетворительное численное решение задачи П. э.

Лит.: Хикс Ч. Р., Основные принципы планирования эксперимента, пер. с англ., М., 1967; Фёдоров В. В., Теория оптимального эксперимента, М., 1971.

М. Б. Малютов.

Большая советская энциклопедия, БСЭ.