Значение МАТЕМАТИЧЕСКАЯ ШКОЛА в Большой советской энциклопедии, БСЭ

Что такое МАТЕМАТИЧЕСКАЯ ШКОЛА

школа , одно из направлений в буржуазной политической экономии. Возникла во 2-й половине 19 века. Основатель М. ш. - Л. Вальрас , видные представители - В. Парето , У. Джевонс , Ф. Эджуорт , И. Фишер , Г. Кассель , К. Викселль . Из предшественников М. ш. наиболее известны А. Курно и Г. Госсен . Подход М. ш. к основным проблемам политической экономии, как правило, мало отличается от концепций, господствовавших в буржуазной экономической мысли 2-й половины 19 века и 1-й трети 20 века.

Специфическая особенность теоретических построений М. ш. - ориентация на маржинализм . Активное использование предельных категорий (предельная полезность, предельная эффективность, предельная производительность), принципа убывания полезности и принципа редкости роднит М. ш. с австрийской школой .

Однако место М. ш. в истории экономической науки определено тем, что она придаёт решающее значение математике как методу изучения экономических явлений. Именно этот принцип объединил порой сильно отличавшихся по своим экономическим взглядам учёных в рамках М. ш.

Для М. ш. ценность математических моделей экономических явлений состоит не столько в том, что они позволяют лаконичным образом описывать эти явления, сколько в том, что с их помощью можно получить из высказанных предпосылок выводы, которые иным путём не могут быть получены. Представители М. ш., и особенно Вальрас, видели в математике метод для исследования как частных, так и глобальных народно-хозяйственных явлений. Типичной является модель равновесия народного хозяйства Вальраса. В отличие от модели народного хозяйства послекейнсианского периода, эта модель основывается не на макроэкономических показателях типа национального дохода, численности занятых, валовых инвестиций, а на показателях, характеризующих поведение отдельных производителей и потребителей (так называемый микроэкономический подход). Каждый производитель характеризуется функцией предложения, а каждый потребитель - функцией спроса. В модели с помощью равновесных цен обеспечивается равенство спроса и предложения по каждому товару. Из возникшего равновесия система может быть выведена только с помощью внешних сил. Осуществленный Вальрасом, Джевонсом, Парето анализ условий равновесия рыночной экономики оказал большое влияние на буржуазных экономистов середины 20 века, занимавшихся проблемами построения математических моделей капиталистической экономики.

Модели Вальраса и других представителей М. ш. далеки от того, чтобы адекватно описывать даже экономику капитализма периода свободной конкуренции. Они упрощают, а часто и искажают реальные условия функционирования капиталистической системы хозяйства. Достаточно указать на статичность этих моделей, на игнорирование циклического характера развития капиталистической экономики, классовой борьбы и т. д. Вместе с тем модели, разработанные М. ш., сыграли и известную положительную роль, стимулируя исследования, приведшие к созданию в 50-е годы 20 века межотраслевой модели народного хозяйства на основе метода 'выпуск - затраты', а также к получению интересных результатов в области ценообразования в условиях экономического равновесия (модели Д. Гейла, Дж. К. Эрроу, Г. Дебре и других).

Возрастание престижа М. ш. в буржуазной экономической науке во 2-й половины 20 века в большой степени связано также с тем значением, которое приобрели экономико-математические модели в практике государственно-монополистического регулирования капиталистической экономики.

Работы представителей М. ш. всегда привлекали внимание экономистов-марксистов. Глубокий критический анализ их осуществил ещё в 20-е годы советский экономист И. Г. Блюмин. В связи с тем, что с 60-х годов в советской экономической науке резко возрастает сфера использования математических методов, М. ш. вновь становится объектом интенсивного критического анализа.

Лит.: Блюмин И. Г., Критика буржуазной политической экономии, т. 1, М., 1962; Шляпентох В. Э., Эконометрика и проблемы экономического роста, М., 1966.

В. Э. Шляпентох.

Большая советская энциклопедия, БСЭ.