нуль, начало отсчёта абсолютной температуры; расположен на 273,16 К ниже температуры тройной точки воды (см. Температурные шкалы ) . Существование абсолютной температуры и А. н. следует из второго начала термодинамики ; из третьего начала термодинамики следует, что А. н. недостижим. С приближением температуры к А. н. стремятся к нулю тепловые характеристики вещества: энтропия , теплоёмкость , коэффициент теплового расширения. Резкое снижение интенсивности теплового движения атомов и молекул вблизи А. н. приводит к тому, что все вещества в этих условиях имеют упорядоченную кристаллическую структуру (исключение составляет жидкий гелий ). По представлениям классической физики при А. н. энергия теплового (хаотического) движения молекул и атомов вещества равна нулю. Согласно же квантовой механике , при А. н. атомы или молекулы, расположенные в узлах кристаллической решётки не находятся в полном покое, они совершают 'нулевые' колебания и обладают т. н. нулевой энергией . Если масса атомов и энергия взаимодействия между ними очень малы, нулевые колебания могут воспрепятствовать образованию кристаллической решётки. Это имеет место у изотопов гелия 3Не и 4He, которые остаются жидкими вплоть до самых низких достигнутых температур.
Получение температур, предельно приближающихся к А. Н., представляет сложную экспериментальную проблему (см. Низкие температуры ), но уже получены температуры, лишь на миллионные доли градуса отстоящие от А. н.
Лит. см. при ст. Температурные шкалы и Низкие температуры .