Значение ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ в Энциклопедическом словаре Брокгауза и Евфрона

ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ

Уже давно было замечено, что если обмотать стальную иглу проволокой и разрядить через эту проволоку лейденскую банку, то северный полюс не всегда получается на том конце иглы, где его можно было ожидать по направлению разрядного тока и по правилу Ампера (Савари, 1827). Это явление может быть объяснено только так. Разряд носит колебательный характер, т. е. происходит явление, аналогичное колебанию маятника. Если вывести маятник из положения равновесия и затем отпустить его, то маятник, вернувшись в положение равновесия, по инерции перейдет через него, отклонится в противоположную сторону, снова пройдет через положение равновесия, отклонится в первоначальном направлении и т. д. Так как колебания маятника сопряжены с уменьшением энергии, которая тратится на преодоление трения и переходит в теплоту, то колебания должны затихнуть. Нечто аналогичное происходит при разряде конденсатора через проводник, обладающий некоторым коэффициентом самоиндукции (см. Индукция). Самоиндукция играет в Э. явлениях роль инерции. Благодаря этому при соблюдении известных условий разряд конденсатора может носить колебательный характер, т. е. после того, как с одной обкладки конденсатора уже стекло столько электричества, что потенциалы обеих обкладок сравнялись, течение электричества благодаря Э. инерции, т. е. самоиндукции, продолжается и конденсатор перезаряжается, затем то же самое происходит в обратном направлении. Так как часть энергии тратится на Джоулево тепло, т. е. на нагревание, то и Э. колебания должны ослабевать и затихнут. Разряд прекращается, когда колебания ослабнут настолько, что будут не в состоянии преодолеть искрового промежутка. Опыт Савари, указанный в начале, и объясняется тем, что намагничивание иглы зависит от направления последнего разрядившегося через искру тока, который может быть обратным первому. Введение в цепь разряда большого гальванического сопротивления, напр. намоченной нити, уничтожает колебательный характер разряда, подобно тому, как и маятник без колебаний возвращается в положение равновесия при существовании большого трения.Период (продолжительность) одного колебания зависит от емкости и самоиндукции и есть, вообще говоря, величина очень малая. Благодаря исследованиям сэра Вильяма Томсона (лорда Кельвина) мы можем количественно выразить условия, необходимые для возникновения колебания, и определить период колебания, по крайней мере в первом приближении. Разряд конденсатора происходит в почти замкнутом проводнике. Мы предполагаем, что ток смещения (см. Э. смещение) не оказывает влияния на величину коэффициента самоиндукции. Далее мы предполагаем, что можем пренебречь емкостью проводов сравнительно с емкостью конденсатора. Пусть емкость конденсатора С, потенциалы обкладок его V1 и V2, заряд положительной обкладки конденсатора еm (в электромагнитных единицах), сила тока i, коэффициент самоиндукции L, сопротивление цепи — r. Тогда мы можем написать следующие уравнения:еm = С(V1 — V2)... (1)i = —d еm/dt... (2)илиi = —C\[d(V1 — V2)/dt\]... (3).Выражение закона Ома в данном случае будетir = —L(di/dt) + V1 — V2 ... (4).Если умножить уравнение (4) на С, продифференцировать его по t и сложить с уравнением (3), то получается:Cr(di/dt) + i = —LC(d2i/dt)или(d2i/dt2) + (r/L)(di/dt) + (1/LC)i = 0... (5).Общий интеграл этого выражения будет: b79_415-1.jpg Здесь A1 и A2 две независимые постоянные, e — основание Неперовых логарифмов, a k1 и k2 оба корня квадратного уравненияk2 + (r/L)k + 1/(LC) = 0,т. е. b79_415-2.jpg Легко показать, что если k1 и k2 — вещественны, то при разряде ток сначала возрастает до некоторого максимума, потом непрерывно падает до нуля. Следовательно, колебаний нет. Если k1 и k2 мнимы, то ток, как мы сейчас увидим, есть периодическая функция времени, причем направление тока меняется. Следовательно, мы имеем колебания. Отсюда получается условие, необходимое для возможности колебаний, а именно:r

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.