Значение слова ЦЕМЕНТЫ в Энциклопедическом словаре Брокгауза и Евфрона

ЦЕМЕНТЫ

Так, вообще, называются в строительном деле вещества, служащие для скрепления твердых материалов возводимых сооружений в силу химических и физических изменений, происходящих в этих веществах. Различают Ц. воздушные и гидравлические в зависимости от среды, в которой должно происходить их затвердевание; однако в то же время при таком делении подразумевается, что всякий гидравлический цемент может быть употреблен и в воздушной среде. Представителем воздушных Ц. служит обыкновенная известь, а гидравлических — разнообразные виды "Ц.", в тесном смысле, каковы романский и портландский, гидравлические извести и др. По международной классификации, принятой на съезде 1885 г. в Дрездене, к Ц. собственно отнесены: 1) гидравлические извести, 2) роман-Ц., 3) портланд-Ц., 4) гидравлические добавки (пуццоланы и цемянки), 5) шлаковые (так назыв. пуццолановые) Ц. и 6) смешанные Ц. Древнейший строительный раствор — известковое тесто, приготовляемое, напр., из 1 ч. извести и 1/2 — 1/3 частей воды, употребляется в смеси с песком только для воздушных построек, так как водой размывается; твердение этого раствора зависит, главным образом, от поглощения им углекислоты из воздуха и гораздо менее — от образования кремнекислой извести. Хотя отвердевание раствора извести сопровождается и действительным высыханием, но это последнее не составляет главной сущности процесса; это видно уже из того, что известковое тесто в виде строительного раствора (т. е. с песком) можно высушить на водяной бане досуха и все-таки при этом получится пористая масса, легко растирающаяся в порошок. Две другие реакции, определяющие отвердевание (поглощение СО2 и образование основной кремнеизвестковой соли), совершаются очень медленно, так как образовавшийся сначала слой углеизвестковой соли предохраняет остальную массу от доступа СО2. Твердение идет столетиями, что видно из анализов Ц. старых строений; так, через 18 лет после окончания кладки Ц. заключал еще столько свободной извести, что для насыщения ее не хватало 17,3 % углекислоты (считая от всего нужного для насыщения количества СО2); в 50-летнем Ц. недоставало 9,61 %, в 100-летнем — 3,38 %, в 300-летнем — 3,30 % \[В Берлине, в подвалах одной старой церкви, нашли творило, забытое 300 лет тому назад. Оказалось, по анализу, что в нем еще не вся известь перешла в углекислую.\]. Образование кремнекислой извести менее важно, что видно уже из факта достаточной крепости растворов, приготовленных на известковом песке вместо кварцевого. По мере перехода извести едкой в углекислую выделяется вода, что и составляет одну из причин сырости новых зданий. Если вода, на которой затворено тесто, содержит NaCl, то стены не только сыреют (от образования CaCl2), но и покрываются белым налетом угленатровой соли — этим объясняется, почему нельзя для затворения извести брать морскую воду. Основное отличие воздушного раствора от гидравлического в процессе твердения то, что первый выделяет воду, а второй поглощает ее. Свежеприготовленная смесь извести с песком быстро размывается водой, но и затвердевшая не выдерживает продолжительного пребывания в воде; но если известь смешать с той разновидностью SiO2, которая растворима в водном растворе щелочей, то полученная смесь обладает свойством затвердевать под водой; такая смесь представляет, след., уже Ц. гидравлический; можно брать и не чистый кремнезем, а его соединения, лишь бы кремнезем, выделяемый из них кислотами, был не кристаллический, а аморфный. За 3000 лет до нашего времени было известно, что если к извести примешать порошка пуццоланы \[Пуццуол — селение близ Неаполя, где находили эти вещества.\], вещества вулканического происхождения — то полученная смесь по затворении имеет свойство затвердевать под водой. Тем же свойством обладают трассы (тоже вулканического происхождения), а римляне употребляли даже просто толченый кирпич. Только в 1829 г. проф. Фукс показал, что затвердевание в этих случаях определяется образованием гидрата кремнекислой извести из аморфного кремнезема, явившегося в пуццоланах, трассах и кирпиче вследствие влияния высокой температуры. Трассы и пуццоланы имеют след. состав:

-

| | Пуццолана из Везувия | Трасс с Рейна |

| | - - |

| | Растворимых | Нерастворимых в | Растворимых | Нерастворимых |

| | в HCl | HCl | в HCl | в HCl |

| - - - - - |

| SiO2 | 10,25 | 48,90 | 11,50 | 37,44 |

| - - - - - |

| Al2О3 | 9,00 | 12,27 | 17,70 | 1,25 |

| - - - - - |

| Fe2O3 | 4,76 | — | 11,77 | 0,57 |

| - - - - - |

| CaO | 1,90 | — | 3,15 | 2,25 |

| - - - - - |

| MgO | — | — | 2,15 | 0,27 |

| - - - - - |

| NaCl | 2,56 | — | — | — |

| - - - - - |

| KHO | 1,50 | 2,87 | 0,29 | 0,08 |

| - - - - - |

| NaHO | — | 6,23 | 2,44 | 1,12 |

| - - - - - |

| Воды | — | — | 7,65 | — |

| - - - - - |

| | 29,97 | 70,27 | 56,65 | 42,98 |

- Они характеризуются малым содержанием щелочей, почему и требуют прибавки извести, чтобы образовать те кремнеизвестковые соединения, которые и придают смеси свойство твердеть под водой. Кроме упомянутых вулканических пород, всякое соединение кремнезема, содержащее его в растворимом видоизменении, годно для образования с известью гидравлического цемента, а так как переход SiO2 из нерастворимого в растворимый вид достигается действием высокой температуры, то, как показал Фукс, всякий кремнеземистый минерал может быть годен для гидравлического цемента, если его подвергнуть обжигу. Такие породы, как граниты, гнейсы, порфиры, полевой шпат, слюда и даже простая глина, не говоря о чистом кремнеземе (горный хрусталь, халцедон), все после обжига затвердевают под водой с известью. Относительно пригодности глин и мергелей как материала, имеющего весьма большое распространение, еще ранее Фукса сделаны были исследования французским инженером Вика, работы которого начались в 1812 г. \[Вика еще в 1812 г. показал, что обожженная смесь чистой углекислой извести и глины в известной пропорции по измельчении затвердевает с водой без всяких прибавок.\], а в 1818 г. он высказал мнение и доказал опытом, что всякий известковистый минерал, содержащий глину в известном количестве, способен дать так назыв. гидравлическую (т. е. твердеющую под водой) известь после надлежащего прокаливания. С 1837 по 1841 гг. Вика показал, что большая часть глин владеет свойством превращаться в пуццоланы вследствие обжига, т. е. затвердевать с известью под водой, почему продукт обжига глин и назвали искусственной пуццоланой (цемянка). Вика предпринял затем исследование разных французских глин, мергелей, известняков, благодаря которому во Франции быстро стало развиваться производство гидравлических известей и Ц., получаемых прокаливанием естественных глинистых известняков \[Незадолго до Вика (1796) Джемс Паркер открыл, что глинистые почвы устьев Темзы с 30—35 % глины после обжигания и измельчения дают Ц., на производство которого он и взял патент, назвав свой Ц. романским. Несколько лет спустя такое же открытие было сделано французами в Булони.\]. Такие Ц. во Франции получили название Ц. романских, или быстротвердеющих (быстросхватывающих), но впоследствии из естественных глинистых известняков стали делать и медленно схватывающие Ц., почему за всеми Ц. этого рода оставлено только название "романских", без других характеристик. Большие неудобства, зависящие от неоднородности глинистых известняков, повели к дальнейшим весьма важным открытиям в приготовлении Ц. Действительно, известняки с малым содержанием глины дают гидравлическую известь, с большим содержанием — гидравлические Ц. разных качеств, а естественные толщи мергелей даже незначительной мощности обыкновенно очень неоднородны по составу. Исключения вроде тейльских известняков во Франции в 50 м толщины с колебаниями только от 16 до 18 % глины или новороссийских — в 1 ? арш. с 22—24 % глины, такие исключения редки. Ввиду этого понятно стремление приготовить гидравлический Ц. из смеси глины и извести. Вика показал (опытом), что это возможно, но практическое осуществление эта мысль получила в Англии. Каменщик Аспдин в Лидсе, прокалив (1500° — 1700°) шоссейную пыль (углекислая известь) с 25 % глины в виде хорошо приготовленной тесной смеси, получил новый Ц., который и назвал портландским по сходству его цвета с портландским песчаником (патент 1824 г.). Однако только 30 лет спустя после этого открытия английские портланд-Ц. получили распространение, а затем и преобладание. Толчок дала Лондонская всемирная выставка 1851 г., после которой на континенте весь портланд-Ц. был английский до 1878—80 г., когда наконец производство его стало развиваться в Германии. В России с 1857 до 80-х гг. производство это развивалось медленно; в настоящее же время Россия — третья страна по количеству производимых Ц., между которыми портландские преобладают. Ежегодное производство разных государств Европы выражается такими цифрами (в бочках около 10 пд. по весу netto; за 1900 г.): Германия; 30 милл. бочек.

-

| Англия | 9 " " |

| - - |

| Россия | 4 " " |

| - - |

| Франция | 3,5 " " |

| - - |

| Бельгия | 1 " " |

| - - |

| Австро-Венгрия | 1 " " |

| - - |

| Дания | 0,5 " " |

| - - |

| Швеция | 0,5 " " |

- Всего до 50 миллионов бочек на сумму 150 миллионов рублей \[Шуляченко, "Состояние цементной промышленности на Западе и у нас".\]. На последнем (7-м) съезде русских цементных заводчиков и техников в 1901 г. предполагалось выработать 6,8 милл. бочек, т. е. до 70 милл. пудов; роман-Ц. ожидается около 7 милл. пудов, откуда видна степень преобладания Ц. 1-го рода. Те же отношения получатся, если взять цифры, уже осуществленные; так, в 1899 г. выработано портланд-Ц. 30 милл. пудов, а роман-Ц. — 6 милл. Из способа приготовления Ц. уже ясно, какую важную роль играют количественные отношения между известью и глиной, т. е. между СаО, с одной стороны, и SiO2 и Al2О3 — с другой. Практика указала, что степень гидравличности Ц. зависит, главным образом, от этого отношения, которое поэтому всегда и приводится как характеристика Ц., под названием его гидромодуля; иногда берут обратное отношение, т. е. отношение суммы кремнезема и окиси алюминия к извести, носящее название показателя гидравличности (indice d'hydraulicit?). Так как глины содержат железо, а известь — калийные и натровые соединения, и так как те и другие имеют свое значение для качеств Ц., то обыкновенно они тоже вводятся в расчет гидромодуля и показателя гидравличности; таким образом гидромодуль будет равен отношению количеств (CaO,K2O,Na2O)/(SiO2,Al2O3,Fe2O3) = гидромодуль. Обратное этому отношение будет показатель гидравличности. Вика основал свою классификацию гидравлических Ц. на величине показателя гидравличности, который, в свою очередь, показывал количество глины, содержащейся в данном продукте. Так, по этой классификации различались извести слабогидравлические = 0,1—0,15, среднегидравлические = 0,16—0,31, гидравлические = 0,31—0,42, сильно (eminement) гидравлические = 0,42—0,5, предельные, или медленно твердеющие Ц. = 0,5—0,65 и, наконец, быстротвердеющие Ц. = 0,65—1,2. Таким показателям, по Вика, отвечает соответственно содержание глины от 5,3 % до 40 % и время затвердевания (схватывания) от 30 до 2-х дней. Не вдаваясь в теоретические соображения о причинах схватывания Ц., заметим, что, по всей вероятности, преобладающую роль в этом процессе играет образование соединения SiO2(CaO)3, которого показатель = 0,35, откуда по сравнению с составом Ц. видно, насколько качество Ц. зависит от содержания в нем (до известного предела) соединений SiO2, вводимых в форме глин и мергелей. В настоящее время классификация Вика не употребляется, но качество Ц., согласно официальным инструкциям, определяется все-таки пределами показателя гидравличности. Так, во Франции для морских работ минимум показателя назначен 0,44 (хотя 0,42 и 0,43 относятся к вполне удовлетворительным Ц.), а у нас для портланд-Ц., по техническим условиям приемки (утвержденным министром путей сообщения), гидромодуль должен быть 1,7—2,2, т. е. показатель = 0,6—0,45. Тем не менее, показатель не дает полной характеристики Ц., так как свойства последнего так сильно зависят от многочисленных иных факторов, что без знания состава Ц., по одному только показателю его, нельзя предсказать, годен или нет взятый Ц. в данных обстоятельствах. Необходимо поэтому изучение состава разных Ц. и влияния составных частей на основные свойства Ц., каковы способность более или менее быстрого затвердевания, неизменяемость объема цемента в данной среде, химическая неизменяемость его средой и др. Гидравлические извести. Химический состав гидравлических известей очень разнообразен и этим отличается от цементов, у которых пределы состава очень сближены. Под именем гидравлической извести подразумевают такой продукт обжига мергелей, доломитов и др., который содержит достаточно свободной извести и магнезии, чтобы при "гашении" его водой рассыпаться в порошок. Этим гидравлическая известь отличается от роман-Ц., который сам не распадается в порошок и потому должен быть измельчен. Гидравлическая известь, так полученная, называется естественной в отличие от искусственной, получаемой из глины и мела (изготовляющих ее заводов теперь очень мало). Одна из лучших гидравлических известей — тейльская (Ard?che, Франция) — имеет состав:

-

| Показ. | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO2 | Потеря при | Кремнеземистый |

| гидравл. | | | | | | | прокаливании | песок |

| - - - - - - - - - |

| 1) 0,39 | 23,13 | 1,72 | 0,73 | 63,76 | 0,97 | — | 9,69 | — |

| - - - - - - - - - |

| 2) 0,32 | 19,05 | 1,60 | 0,55 | 65,10 | 0,65 | 0,30 | 12,45 | 0,30 |

| - - - - - - - - - |

| 3) 0,41 | 21,70 | 3,19 | 0,66 | 60,70 | 0,85 | 0,60 | 12,20*) | — |

- *) Веществ неанализированных — 0,1. Показатель гидравличности колеблется для известей в очень широких пределах; так, пределы от 0,2 до 0,5 и даже 0,6 довольно обычны. Обжиг гидравлических известняков ведется в шахтных печах весьма разнообразных типов, из которых укажем печь Шофера и другую — Дитча. Печь Шофера (фиг. 1 табл.) относится к так наз. печам с коротким пламенем, в которых топливо и известь чередуются слоями в отличие от печей с длинным пламенем, где горючее сжигается в отдельно помещенных топках. b74_941-0.jpg ЦЕМЕНТЫ. Фиг. 1. Печь Шофера для обжига гидравлических известняков. В печи два отделения, вернее, две печи одна над другой: в верхней — Е куски известняка подсушиваются газами, идущими снизу, а в нижней — С идет обжиг, причем топливо забрасывается через каналы f; В — отверстие для загрузки, А — для выгрузки. Такая печь дает 15—20 тонн в 24 часа при расходе каменного угля 100—120 кг на тонну, след., около 10 % — 12 % от обожженной извести. За обжигом следует гашение — самая важная операция в приготовлении гидравлической извести, что не всегда сознается производителями этого продукта. Известь из печи отвозится в вагонетках в особые камеры, где ее раскладывают на подвижных платформах слоем в 15—20 см и обрызгивают водой; воды надо 15—20 %, но известь удерживает только 7—8 %, а остальное испаряется; известь отвозится и сваливается в особых рвах, где она медленно остывает, что весьма важно при гашении. Гашение в зависимости от степени гидравличности извести длится до 20 дней, но слабогидравлическая гасится быстро. Известь, плохо погашенная, может по употреблении в дело совершенно разрушить кладку, так как при затвердевании объем ее увеличивается. За гашением следует просеивание — сначала через решетку из железных полос, на которых удерживаются крупные недожженные и пережженные куски, а затем через сито в виде барабана, вращающегося со скоростью 60—80 обор. в мин, обтянутого сеткой (металлической) в 220 до 324 отверстий в 1 кв. см. В торговле отличают легкую и тяжелую гидравлическую известь; последняя представляет уже переход к естественным Ц., владея большим показателем гидравличности. Схватывание извести под водой служит хорошим средством определения качества извести: известь плоха, если схватывание наступает очень быстро и сопровождается разогреванием (есть непогашенные части) или если оно медленнее, чем свойственно ее показателю гидравличности (выветрившаяся или песчанистая известь). Плотность гидравлической извести в зависимости от показателя меняется от 2,5 до 2,8, а плотность гравиметрическая, т. е. вес литра извести, насыпанной без надавливания, заключается в пределах 530—600 гр. для легкой и 700—800 гр. для тяжелой извести. Погашенная известь представляет очень тонкий порошок, оставляющий на сите в 4900 отверстий (считается всегда на 1 кв. см) не более 20—25 % остатка, а на сите в 900 отверстий — 3—6 %; при извести, плохо погашенной, остатки на ситах доходят до 40 % в первом случае и до 20 % во втором. Сравнение разных гидравлических известей по сопротивлению, которое они способны оказать после затвердевания механическим усилиям, преимущественно разрыву и раздроблению, крайне трудно и часто мало связано с показателем их гидравличности; обыкновенно такой пробе подвергают чистую известь и смесь ее с песком в отношении 1 : 3 (строительный раствор). Сопротивление зависит от рода извести (легкая или тяжелая), способа приготовления, качеств воды, употребляемой для гашения (пресная или морская), причем не всегда лучшая по тщательности изготовления известь дает и лучшие результаты по сопротивлению. Нормальные испытания будут описаны подробно ниже, а теперь приведем цифровые примеры. Одна из хороших, легких гидравлических известей — маранская — дает сопротивление разрыву на 1 кв. см: 3 кг через месяц по затворении, 10 кг через 6 месяцев и 13 кг через год. То же сопротивление (почти) оказывает и ее строительный раствор 1 : 3. Вес литра этой извести = 450 гр. Вообще легкие извести показывают заметное сопротивление не ранее месяца по затворении; оно быстро возрастает до 6 месяцев и затем медленно увеличивается до 2 лет. С этого срока сопротивление, по-видимому, остается постоянным. Тяжелые гидравлические извести при том же прогрессивном ходе сопротивления дают большие цифры:

-

| После | Чистая | Раствор: 300 кг |

| затворения | известь | извести на 1 кб. м |

| через: | | песка |

| - - - |

| 7 дней | 3,9 кг | 2,6 кг |

| - - - |

| 28 " | 9,4 " | 5,8 " |

| - - - |

| 3 месяца | 16,0 " | 10,1 " |

| - - - |

| 6 " | 19,7 " | 12,1 " |

| - - - |

| 1 год | 22,2 " | 14,9 " |

| - - - |

| 2 " | 22,5 " | 19,2 " |

- Сопротивление строительных растворов гидравлических известей на сжатие обыкновенно в 5—6 раз более, чем на растяжение. Так как свойства гидравлической извести не всегда можно предвидеть из химического состава ее, то необходимо производить всякий раз пробы, требующие, как видно из вышеприведенных таблиц, продолжительного времени (не менее 4 недель); кроме того, строительные растворы ее очень пористы и потому легко разрушаются текучей водой или волнами; мороз действует тоже очень разрушительно, особенно на строительные растворы легких известей. Гидравлическая известь, помимо всех этих обстоятельств, должна быть тщательно выбрана в зависимости от окружающих условий; так, напр., известь, годная для подводных сооружений Средиземного моря, редко оказывается удовлетворительной в водах океана (Candlot). Пуццоланы, трассы и т. п. К числу древнейших строительных материалов принадлежат некоторые вещества вулканического происхождения, которые по смешении их с известью проявляют свойство затвердевать не только на воздухе, но и в воде. К числу таких веществ относятся вулканические породы окрестностей Везувия и Рима, известные под именем пуццолан, а также трассы (около Дюнкирхена и Кале), санторинская земля и проч. Все главнейшие постройки римлян были возведены при посредстве этих веществ. Изучением их занимался Вика с целью найти способ делать искусственную пуццолану; но прогресс в производстве Ц. указал другой, более удобный путь решения того же вопроса. Вот состав некоторых пуццолан:

-

| | СаО | СаСО2 | MgO | MgCO3 | SiO2 | Al2O3 | Fe2O3 | Друг. вещ. |

| - - - - - - - - - |

| Пуццол. из | 8,96 | — | — | — | 24,5 | 15,75 | 16,30 | 20,0 |

| Неаполя (темная) | | | | | | | | |

| - - - - - - - - - |

| То же (серая) | — | 19,67 | — | 6,83 | 33,67 | 14,73 | 9,46 | 7,3 |

- Для образования хорошо твердеющего Ц. в составе их недостаточно щелочей, что и пополняется прибавлением извести. Так, древнеримские работы были сделаны на Ц., составленном из 2 ч. пуццоланы и 1 ч. извести. В настоящее время берут или равные объемы пуццоланы и извести в порошке, или по весу 2 ч. пуццоланы на 1 ч. извести. Для строительного раствора остается прибавить нужное количество песку (глядя по условиям, напр., равные по объему части пуццоланы, извести и песку). В Дюнкирхене и Кале употребляют смесь трасса с гидравлической известью, в Бельгии — тоже; напр. в некоторых морских сооружениях было взято (Бельгия): трасса 2, гидр.

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.