Значение ТЕРПЕНЫ И ИХ ПРОИЗВОДНЫЕ в Энциклопедическом словаре Брокгауза и Евфрона

Что такое ТЕРПЕНЫ И ИХ ПРОИЗВОДНЫЕ

класс соединений, важных в практическом отношении и весьма интересных в теоретическом; большею частью вырабатываются и выделяются растениями в виде так наз. эфирных масел (см.), но известно также много искусственно получаемых представителей этого класса, которыми в последние лет 17 особенно обогатилась органическая химия и которые в значительной степени облегчили теоретическую разработку всего класса. Ныне, по разъяснении хим. строения большинства Т. и их произв. и установлении связи их друг с другом, равно как и с соединениями других классов, выделение всех этих соединений под общим приводимым выше именем является остатком старой, более грубой систематики, удерживаемой, однако, по некоторым соображениям, еще и до сих пор \[Научная разработка рассматриваемых соединений, исключая отдельные незначительные наблюдения, началась, можно сказать, с 1803 г., с получения при пропускании хлористого водорода в скипидар аптекарем Киндом (Kind) хлористого пинена, названного тогда "искусственной камфорой". Вскоре последовал целый ряд многочисленных и весьма интересных исследований Saussure'a, Dumas, Deville, Berthellot, Tilden, Riban, Mongolfler и мн. др.; из русских ученых в том периоде имеются имена Орловского, Туголесова, особенно же много и плодотворно потрудились проф. Ф. М. Флавицкий и И. И. Канонников. Всеми этими трудами, однако, разъяснено было сравнительно немногое в смысле строения и установления взаимной связи отдельных представителей, и лишь работам последнего периода, который можно считать начавшимся с исследований Валлаха, публикованных с 1884 г., удалось пролить яркий свет на весь этот отдел: в этом периоде из весьма многочисленных работ особенно ценными следует считать труды лаборатории упом. выше Wallache, E. E. Вагнера в Варшаве, Бэйера, Бредта, Землера, Тиманна и др. Строение для большинства главнейших соединений и их производных было предложено Е. Е. Вагнером в 1894 г. и после тщательной проверки в разных лабораториях считается теперь отвечающим действительности и является общепринятым.\]. Т. представляют углеводороды непредельные, эмпирической формулы — C5H8, способные к реакциям присоединения; в зависимости от присоединяющихся групп и элементов образуются соединения, заключающие галоиды, кислород, азот и up.; эти соединения, в свою очередь, путем разных реакций могут подвергаться изменениям, окислению и пр., образуя опять целый ряд соединений, являющихся производными Т. и стоящих более или менее близко к исходному Т. В дальнейшем описаны более важные Т. и рядом с ними главнейшие из их производных, следом же за Т. — те из более важных их производных, которые образуются из них не непосредственно, а окольными путями. Т. принято (не вполне удачно) разделять по величине частичной формулы на 4 класса: I) гемитерпены — C5H8, II) собственно Т. — C10H16, III) сесквитерпены — C15H24, IV) политерпены — (C5H8)n. I. Гемитерпены представляют непредельные углеводороды с открытой углеродной цепью, обладающие двумя этиленными связями или одною ацетиленной, общей формулы СnН2n—2; из них упомянем лишь об изопрене, теснее связанном своими переходами с прочими Т. Изопрен С5Н8 образуется при сухой перегонке каучука, разложении жаром паров скипидара и проч. и представляет подвижную жидкость, кипящую при 35°—38°, уд. в. 0,682. Весьма интересным свойством изопрена является его способность легко полимеризоваться с образованием истинных Т. (C10H16); так, при нагревании в запаянной трубке при 250°—270° он переходит главным образом в дипентен С10Н16; под влиянием крепкой соляной кислоты рядом с хлоропродуктами образуется каучукоподобная масса; такая же масса получается, если изопрен долго подвергать влиянию света и проч. На основания всех известных данных изопрену должно приписать строение: СН2=С(СН3)—СН=CH2. II. Собственно Т. C10H16 являются наиболее интересным и разработанным отделом Т. вообще. Число изомеров, сюда относящихся, до недавнего времени насчитывалось десятками, но благодаря работам Валлаха и др. доказано тождество между собою многих Т. разного происхождения, благодаря чему ныне число главнейших структурных изомеров низведено до 10—12 \[Если принимать во внимание стереохимическую изомерию, то число изомеров возрастет (см. ниже).\]; из них пинен, камфен, лимонен, сильвестрен, фелландрен и терпинен встречаются в природе, фенхен, карвестрен, терпинолен, туйен, борнилен и трициклен получаются искусственно. Встречающиеся в природе Т. входят в состав эфирных масел (см.). Строение и номенклатура. Т. — непредельные соединения с одной или двумя этиленными связями \[Трициклен — новый Т., не заключает, по-видимому, совсем этиленных связей; он описан Годлевским и Вагнером (Ж. 29, 121), но еще не обследован вполне.\], следовательно, с циклической группировкой углеродных атомов; образование же из них под влиянием некоторых агентов цимола, равно как изучение прочих переходов и продуктов окисления, окончательно заставили считать Т. с двумя этиленными связями, построенными близко к дигидроцимолу. На Т. с одной этиленной связью в последнее лишь время установился взгляд как на бициклические соединения, второе кольцо которых образовано при участии изопропильной (цимольной) группы. Для образования номенклатуры Бэйер предложил назвать предельный циклический углеводород — гексагидроцимол — терпаном и от него уже, согласно правилам женевской номенклатуры (1892 г.), производить прочие названия; таким образом, углеводород с одной этиленной связью, т. е. тетрагидроцимол, будет называться — терпен, с двумя этиленными связями, т. е. дигидроцимол, — терпадиен и т. д. При такой, однако, номенклатуре является крупным неудобством необходимость приложения общераспространенного названия "терпен" к таким углеводородам, которые являются уже собственно не Т., а дигидротерпенами — С10H18. Для устранения этого неудобства Вагнер предложил за названием "Т." удержать его теперешнее общее значение, называя им циклические углеводороды C10H16 разного строения, предложенную же Бэйером номенклатуру производить от тривиального названия гексагидроцимола — ментана, тогда тетрагидроцимол будет называться ментен, дигидроцимол — ментадиен, спирт формулы C10H17OH — ментенол и т. д. Мы далее будем придерживаться Вагнеровской номенклатуры. Кроме того, укажем, что знак ? согласно предложению Бэйера принят для обозначения двойной связи, причем сверху ставятся маленькие цифры, указывающие, от которого по счету атома углерода идет двойная связь; если в состав ее входит не следующий по счету атом углерода, то ставятся цифры, указывающие, к которому атому направлена двойная связь; в последнем случае цифра ставится в скобках. Для большей наглядности приведем два следующих примера: b65_046-0.jpg Для бициклических производных предельным углеводородом следует считать C10H18 — дигидропинен или дигидрокамфен, и Бэйер предложил для него название "камфан", от которого можно производить все остальные наименования; это название привилось только к производным камфорной группы, оказавшись неудобоприложимым к производным пинена, так как пинен, камфен, камфорные и др. производные имеют разные скелеты. В самое недавнее время Бэйер предложил новые принципы для номенклатуры бициклических соединений, которые с легкостью распространяются и на бициклические Т. и их производные. Общая характеристика. Т. C10H16, за исключением камфена (темп. пл. 49°) и открытого в прошлом году Вагнером и Брикнером борнилена (темп. пл. 98°), все представляют подвижные жидкости характерного ароматного, отчасти смолистого запаха; сильно преломляют свет; уд. вес их колеблется около 0,85, темп. кип. между 155° и 190°. Растворимость, летучесть и пр. свойства — общие всем непредельным углеводородам. Большинство Т. и их производных должны вращать плоскость поляризации, так как почти во всех них имеются асимметрические угли, но деятельные изомеры в отдельности известны далеко не для всех рацемических представителей. Из химических свойств, кроме обусловленной присутствием этиленной связи способности присоединять разные элементы и группы, Т. обладают сильно развитой изомеризационной способностью, объясняющей переходы их под влиянием кислой среды, повышенной температуры, света и пр. друг в друга, а иногда даже и в представителей иных отделов (бициклических в моноциклические и пр.); далее, у них сильно развита и полимеризационная способность, проявляющаяся как в условиях, вызывающих изомеризацию, так и при окислении на воздухе, чему Т. вообще легко поддаются; при этом они густеют и осмоляются. Свойства производных Т. не обладают такими правильностями, чтобы можно было их свести к общему описанию, и иногда дают неожиданные отклонения. В качестве общих реакций, способствовавших разработке и разъяснению свойств и строения терпенных соединений, являются след. 1a) Присоединение галоидоводорода (HCl, HBr, HJ — вообще НХ) происходит в соединениях моноциклических только по месту этиленной связи, причем, смотря по условиям реакции, можно изолировать образующийся вначале продукт присоединения НХ по месту одной связи, равно как и окончательный продукт, дигалоидгидрат — C10H16·2HX; в соединениях бициклических присоединение происходит или по месту одной из кольцевых связей с изомеризацией продукта (монохлоргидрат пинена), или только по месту этиленной связи с образованием моногалоидгидрата, или же в условиях, способствующих гидратации, и с разрывом одного из 2-х колец, при чем получается продукт уже моноциклический. Введение элементов НХ можно воспроизвести и иным путем, обменивая водный остаток соответственных спиртов на галоид обычным образом, напр. галоидными соединениями фосфора и пр. 1b) Отнятие галоидоводорода происходит или в направлении, обратном присоединению, при чем регенерируется первоначальный продукт, или в ином направлении, как это часто имеет место и в жирном ряду, при чем получается иное соединение; если в продукте, от которого отнимается НХ, находится водный остаток, то весьма часто и он принимает участие в потере частицею элементов НХ, при чем тогда замыкается окисное кольцо. В качестве отнимающего НХ средства чаще всего пользуются едкой щелочью или органическими основаниями (анилин, хинолин и проч.). 2а) Присоединение воды происходит, в зависимости от условий гидратации, или по месту этиленных связей, или в бициклических соединениях, иногда не трогая даже этиленных связей, с раскрытием одного из колец; при этом образуются одноатомные или многоатомные спирты; введение водных остатков можно реализовать также, обменивая в галоидопроизводных галоид на водный остаток, но как дальше указано, при этом могут образоваться соединения с иным пространственным расположением атомов, нежели при прямом введении гидроксилов — стереохимические изомеры. 2b) Отнятие элементов воды происходит, как и при галоидопроизводных, разно, причем в случае присутствия нескольких водных остатков могут и здесь образовываться окисные кольца. 3а) Присоединение галоидов (главным образом брома) в соединениях моноциклических происходит по месту двойной связи, причем можно изолировать продукты присоединения как 2, так и 4 ат. брома, т. е. по месту обеих этиленных связей; в соединениях бициклических присоединение галоидов иногда идет сразу неправильно, и первые же продукты присоединения 2 ат. галоида не соответствуют исходному веществу, а представляют уже продукты изомеризации. 3b) Отнятие галоидов совершается разно: либо под влиянием щелочи в виде галоидоводорода, и тогда происходит, как указано в 1b, либо его производят металлическим натрием или цинковой пылью в спиртовом растворе или в уксусной кислоте при охлаждении, причем в уксусной кислоте реакция идет в нескольких определенных направлениях в зависимости от положения галоидов. 4а) Присоединение водных остатков (2OH) производится или присоединением галоидов к исходному соединению и обменом их на водные остатки, или окислением исходного вещества в слабых водных растворах марганцово-калиевой солью. Кроме того, известен в терпенном ряду еще случай присоединения 2OH, получивший название "реакции Собреро" и состоящий в том, что, напр., скипидар, плавающий на воде, подвергают в атмосфере кислорода действию солнечных лучей; эта реакция не оказалась полезной при попытке дать ей более общее применение. 4b) Отнятие водных остатков производится обменом их на галоиды и затем по обычному правилу отнятия последних (см. 3b). 5а) Присоединение хлористого нитрозила (NOCl) является довольно важной реакцией в ряду терпенных соединений и именно по следующим соображениям: 1) в большинстве случаев получаются кристаллические соединения, что дает возможность по точке плавления последних характеризовать и определять исходные вещества; 2) в случае присутствия в соединении двойной связи в положении третично-третичном >С=С С—ОН—СООН + О = > СО + СО2 + H2O. Перечисленными реакциями далеко не исчерпываются реакции, оказавшиеся плодотворными при разработке отдела Т., но остальные имеют уже более частный характер. Отдельные представители и их производные. 1) Т. с одной этиленной связью (бициклические). Пинен, ?2-2-метил-6-диметилбицикло-\[1,1,3\]-гептен b65_048-1.jpg представляет один из наиболее распространенных в природе Т. (см. Терпентинное масло) и известен во всех трех оптических видоизменениях, причем недеятельный получается искусственно из деятельного через хлоронитрозосоединение. В чистом виде пинен представляет бесцветную жидкость, без запаха, кипящую при 155°—156°; d°0 = 0,8769; \[?\]D = +45,04° и —43,4°. Реагирует, как соединение с одной этиленной связью; легко изомеризуется, переходя нередко в Т. с двумя этиленными связями; так, под влиянием йода переходит, главным образом, в цимол, серная кислота переводит его в смесь камфена с цимолом, нагревание при 250°—270° — преимущественно в дипентен; подобное же влияние оказывают разведенные кислоты и проч. На воздухе в присутствии влаги и особенно щелочей пинен легко окисляется и осмоляется. Строение его установлено, главным образом, по окислению и переходу во влажном кислороде в собрерол. Главнейшие из производных пинена образуются при указываемых ниже реакциях. Присоединение хлористого водорода к пинену является первой реакцией, воспроизведенной искусственно в терпенном ряду; несмотря, однако, на почти 100-летнее знакомство с нею и громадное теоретическое значение ее, реакция эта лишь в самое последнее время начинает получать удовлетворительное разъяснение. Образование кристаллического монохлоргидрата C10H16·HCl сопровождается некоторой изомеризацией; по Вагнеру и Землеру, монохлоргидрату пинена принадлежит следующая конфигурация, образовавшаяся с изомеризацией пиненного ядра в камфорное: b65_048-2.jpg Этот хлоргидрат тождествен с хлоргидрином борнеола (см. дальше камфен) и по виду и по многим своим свойствам очень напоминает обыкн. камфору; он плавится при 125° и кипит при 207°—208°. В присутствии хоть следов влаги образуется не монохлоргидрат, а дихлоргидрат, тождественный с дихлоргидратом лимонена (дипентена): b65_048-3.jpg Дихлоргидрат представляет кристаллич. массу, плавящ. при 50° и кипящую (при 10 мм давл.) при 118°—120°; оптически недеятелен даже при образовании из деятельных Т., и это находится в полном согласии с переходом в дихлоргидрате всех асимметрич. углеродов исходного соединения в симметрические. Монохлоргидрат как таковой при обработке хлористым водородом ни в каких условиях не переходит в дихлоргидрат и поэтому не должен быть рассматриваем как промежуточный продукт образования последнего. Отнятие HCl протекает разно для обоих галоидгидратов; монохлоргидрат очень прочен, и удаление из него хлора происходит лишь при весьма энергичных условиях; при этом получается уже не исходный пинен, а камфен. Дихлоргидрат при отнятии HCl тоже не регенерирует пинена, а дает дипентен, и эта реакция, воспроизведенная в 1849 г., была первым случаем перехода от пинена к лимонену. Присоединение элементов воды при действии на пинен уксусной или муравьиной кислот при различных температурах дает смесь одноатомных спиртов C10H17OH, из которых два представляют соединения, не заключающие этиленной связи, след., бициклические (борнеол и фенхиловый (?) спирт), и третий непредельный — терпинеол (?l-ментен-8-ол). Образование борнеола аналогично образованию монохлоргидрата пинена. Терпинеол кристалличен, плав. при 34°, кип. при 218° и, полученный из оптически деятельного исходного вещества, вращает плоскость поляризации: \[?\]D = —117°5'. Присоединение 2H2O к пинену происходит под влиянием водных кислот, при чем образуются кристаллы с 1 част. кристаллизационной воды состава С10Н20О2·H2О. Кристаллы эти — терпингидрат — плав. при 116°—117°; при перегонке сначала отщепляется кристаллизационная вода, и затем при 258° гонится безводный терпин, плавящ. при 104°—105°. Присоединение воды можно реализовать, присоединяя к пинену галоидоводород и обменивая галоид на водный остаток. Полученный таким путем терпин из дигалоидгидрата пинена (дипентена) оказался, однако, не тождественным с терпингидратом, равно как оказались не тождественными дигалоидгидраты, полученные непосредственно присоединением галоидоводорода к Т. и полученные обменом на галоид водных остатков терпингидрата. Новый терпин кристаллизуется без воды, плав. при 156°—158° и перегоняется при 263—265°; отвечающий ему дихлоргидрат уже описан выше (т. пл. 50°), дихлоргидрат же, получаемый из терпингидрата обменом его гидроксилов на хлор, плавится при 39°. Объясняется это явление при помощи стереохимических соображений о цис-транс-изомерии в ряду циклических соединений, причем, так как терпингидрат при дегидратации образует предельную окись — цинеол, которая способна снова переходить в терпингидрат, то последнему и приписывается цис-конфигурация, другому же — транс-: b65_049-1.jpg При отнятии воды от цис-терпина, кроме предельной жидкой окиси — цинеола, кип. при 176°, образуется еще ряд непредельных спиртов — ментенолов и два терпена — терпинолен и дипентен (см. дальше). Присоединение галоидов к пинену в силу его изомеризационной способности протекает ненормально. Путем довольно сложных манипуляций при действии брома получается кристаллический С10Н16Br2 с темп. плавл. 169°—170°. Это же соединение образуется из пинена при обработке его бромноватистой кислотой; оно, однако, не представляет бромистого пинена как по способу его образования, так и по тому, что при отнятия брома цинковой пылью получается не пинен, а новый Т. (трициклен). С10Н16С12, образующийся из пинена под влиянием хлорноватистой кислоты, плавится при 165—168° и вполне аналогичен C10H16Br2. Присоединением водных остатков к пинену при окислении его влажным кислородом на солнечном свету образуются кристаллы непредельн. гликола — собрерола С10Н18О2, строения: b65_049-2.jpg Собреролы, полученные из деятельного пинена, вращают плоскость поляризации и плав. при 150°; недеятельная же смесь обоих изомеров — при 131°; кип. при 270°. Собрерол оказал немалую услугу в установлении строения пинена. Присоединение хлористого нитрозила к пинену ведет к образованно биснитрозильного продукта состава С10Н16Cl—N2O2—C10H16Cl, плав. при 103°. При обработке хлоронитрозопродукта спиртовой едкой щелочью образуется нитрозопинен — С10H15NO (плав. 132°); последний под влиянием спиртовой;соляной кислоты переходит в хлоргидрат карвоксима — C10H15ClNOH b65_049-3.jpg Хлоронитрозопинен под влиянием анилина, как упомянуто выше, теряет элементы хлористого нитрозила, при чем регенерирует пинен. Присоединение хлорноватистой кислоты дало целый ряд интересных продуктов; так, получен кристаллич. продукт C10H18Cl2O2, плав. при 136—137°, строение которого: b65_049-4.jpg Из него при отнятии хлора нормально образуется собрерол, а заменой хлора водными остатками — собреритрит, четырехтомный спирт ментан-1,2,6,8-тетраол, плавящ. при 193—194°. При обработке продуктов реакций щелочью получены два кристаллич. соединения состава С10Н17О2Cl; одно с темп. пл. 131—132°, другое — 104—105°; первое является оптически деятельным изомером, вращающим в обратном направлении, чем исходный пинен, \[?\]D = +88°23', второе — рацемической смесью обоих; кроме того, получена двуокись С10Н6О2. Достойно внимания, что кристаллический хлоргидрин C10H17ClO2 не способен ни при каких условиях переходить в двуокись, откуда следует, что он не должен быть рассматриваем как промежуточный продукт при образовании последней. Строение этих соединений еще не установлено, образование в этих же условиях продукта C10H16Cl2 было уже упомянуто выше. Реакции окисления по отношению к пинену были применены очень давно, но только теперь, когда строение терпениловой (см.) и теребиновой (см.) кислот установлено, когда известно образование из пинена цимола под влиянием кислот и, наконец, когда применены нейтральные и щелочные окислители, били получены данные, давшие возможность окончательно установить строение пинена. При окислении было получено много разных продуктов и кислот, и мы ограничимся лишь указанием формулы и названия главнейших. Так, при окислении марганцевокалиевой солью получены: b65_050-1.jpg Две последние кислоты под влиянием щелочного раствора брома переходят в соответствующие двухосновные кислоты. b65_050-2.jpg Пиноилмуравьиная кислота указанной выше формулы известна лишь в солях и иных производных, в свободном же состоянии она является в виде лактона. Кроме указанных кислот, изучена еще кислота С10Н16О3, названная нопиновой; она представляет ?-оксикислоту и, как таковая, под влиянием перекиси свинца переходит в кетон С9Н4О — нопинон: b65_050-3.jpg Образование последних двух продуктов, а также нопинолгликола, образующегося в числе других упомянутых выше веществ при обработке щелочью продуктов присоединения к пинену хлорноватистой кислоты, делает весьма вероятным предположение, что к обыкн. пинену постоянно примешан его изомер нопинен с этиленной связью вне кольца: b65_050-4.jpg (Т. и их производные этой формулы называют псевдоформами). Сохраняющееся во всех приведенных производных диметилтетраметиленное кольцо Бэйер предлагает назвать "пицеанным" кольцом. Образование кислот теребиновой и терпениловой под влиянием кислых окислителей также легко объясняется, если только принять во внимание, что, как уже было указано выше, под влиянием кислот гидратируется пицеанное кольцо (образование дихлоргидрата, терпина, терпинеола и проч.). Камфен, ?2-3-метилен-2-диметилбицикло-\[1,2,2\]-гептен (?) b65_050-5.jpg (Вагнер) Камфен в природе встречается в скипидаре из "Pinus sibirica", a также и в некоторых др. эфирных маслах, как-то: Ol. Citronell., Ol. Zingiber., Ol. Camphor. и проч. Получают камфен искусственно или из монохлоргидрата пинена отнятием от него HCl, или же в более чистом состоянии из изоборнеола либо борнеола (С10Н17ОН), отщепляя от них воду хлористым цинком, серной кислотой и пр.; при этих реакциях, кроме дегидратации, происходит и изомеризация углеродного ядра, так как, судя по всем данным, в камфене имеется иной углеродный скелет, чем в борнеоле и монохлоргидрате пинена. Камфен плав. около 50° и кип. при 160—161°. Запах его приятный, слегка камфорный; d48 = 0,850; камфен известен в трех оптич. видоизменениях: правый, левый и недеятельный; максимальное вращение: \[?\]D = —80°37'. Он реагирует как соединение с одной этиленной связью, хотя все реакции присоединения, характеризующие этиленную связь, протекают по отношению к камфену сравнительно медленно и не всегда правильно; в пользу одной, однако, этиленной связи говорит и коэфф. преломления при 48° nc = 1,4555. Вычисленная молекулярная рефракция вполне совпадает с рассчитанной на одну этиленную связь. Камфен не способен изомеризоваться ни в один из известных Т.; под влиянием, однако, крепкой серной кислоты разлагается сравнительно легко, фосфорный ангидрид переводит его в масло, содержащее цимол, при нагревании при 250—270° переходит в жидкость, в которой находятся продукты с более низкой и более высокой точкой кипения, нежели исходный камфен и проч. На воздухе не изменяется и не осмоляется. Строение самого камфена еще не установлено вполне, и его необходимо признать существенно отличным от строения камфоры и пр. многочисленных продуктов, связанных переходами с последней. В рассуждениях о строении камфоры (см.), обладающей тем же ядром, что и остальные главнейшие представители камфорного ряда, одно из первых мест должно занимать получение глубоким окислением камфоры триметилянтарной кислоты: b65_050-6.jpg Это же самое ядро находится в борнилене (см. дальше), открытом всего год тому назад и непосредственно отвечающем борнеолу, камфоре и пр. продуктам этого ряда. Присоединение HCl (1 ч-ца) к камфену дает хлоргидрат, плав. при 159° и отвечающий, по-видимому, не камфену, а борнилену; галоидгидрат, получаемый из правовращающего камфена, вращает влево, из левого камфена — вправо. О строении этих гидратов см. ниже. Отнятие HCl от упомянутых хлоргидратов происходит легко даже при простом нагревании их с водой при 100° (отличие от монохлоргидрата пинена), при этом получается обыкновенно чистый камфен, образование которого нужно считать опять-таки сопровождающимся изомерацией; в некоторых, однако, особых условиях удается получить непосредственный продукт — борнилен. Присоединение воды к камфену дает следующую картину: из пинена под влиянием органических кислот, как уже было указано, образуется между прочими продуктами отвечающий камфоре предельный спирт — борнеол С10Н17ОН; из камфена в подобных же условиях образуется также предельный спирт, изоборнеол С10Н17ОН, отличающийся, однако, от борнеола своей способностью легко терять элементы воды и регенерировать при этом камфен (аналогия указанных свойств спиртов со свойствами хлоргидратов, получаемых подобными же путями!); и здесь при соблюдении некоторых условий удается получить прямой продукт дегидратации — борнилен. Борнеол и изоборнеол при окислении переходят в один и тот же соответственный кетон — камфору, равно как смесь их обоих получается при восстановлении камфоры. Борнеол и изоборнеол, след., представляют спирты вторичные и, переходя в тот же самый кетон — камфору, должны являться изомерами лишь стереохимическими. Оптические свойства спиртов, получаемых из камфена, повторяют явление, наблюдаемое при хлоргидратах, т. е. правый камфен дает левовращающий спирт, левый углеводород — правый спирт. Борнеол представляет собой кристаллы, плав. при 203—204°, кип. при 217°; изоборнеол плав. при 217°, темп. же кип. не поддается определению вследствие громадной сублимационной способности продукта; уксусный эфир борнеола кристалличен и плавится при 29°, изоборнеола — жидок. Оба спирта встречаются в природе и известны под именем борнейской камфоры (см.), в которой заключается около 80% борнеола и 20% изоборнеола. Борнеол не обменивает на холоду водного остатка на хлор под влиянием хлористого водорода, а лишь при действии пятихлористого фосфора, тогда как изоборнеол легко образует хлоргидрат при пропускании хлористого водорода в спиртовой раствор изоборнеола. При тщательном сравнении хлористого изоборнила с хлоргидратом камфена они оказались вполне тождественными. Из камфена, следовательно, образуются лишь правый и левый хлористые изоборнилы. Хлористый борнил получается через борнеол; он оказывается тождественным с хлоргидратом пинена (Вагнер). Формулы строения обоих спиртов: b65_051-0.jpg и отвечающих им хлоргидринов одинаковы и должны различаться между собой лишь пространственным расположением атомов. Присоединение галоидов к камфену протекает сложно; при сильном охлаждении образуются кристаллы бромистого камфена С10H16Br2, плавящиеся при 90°; вместе с ними, однако, образуется и побочный продукт С10Н15Br, который пока ближе не исследован. Кроме бромюра, известен продукт C10H16Cl2, плавящийся при 155° и образующийся, если хлорировать хлоргидрат камфена; легче получается тот же хлорюр, если обрабатывать камфору пятихлористым фосфором, и этот путь указывает, что в описываемом хлорюре углеродный скелет камфорный и оба хлора стоят при одном и том же углероде. Вообще этот хлорюр непрочен и легко отщепляет хлороводород. Присоединение водных остатков к камфену, след., получение камфенгликола C10H18O2 реализовано окислением камфена марганцово-калиевой солью; при этом камфен из борнеола образует гликол с темп. плав. 192,5°—194°, а камфен из изоборнеола — с темп. плав. 197,0—198,5°. Строение гликола надо считать отвечающим формуле камфена, след., не отвечающим конфигурации соединений камфорной группы, так как при дегидратации он образует не кетон — камфору, а альдегид, что согласуется с формулой гликола, долженствующего отвечать камфену. Присоединение хлорноватистой кислоты по отношению к камфену протекает также не совсем правильно; из продуктов реакции удается отгонкой выделить соединение состава C10H15Cl, которое представляет, по-видимому смесь; кроме того, образуется соединение C10H16Cl2, строение которого еще не установлено, равно как получается еще окись C10H16O, которая весьма легко, даже при простом взбалтывании с кислой сернисто-натриевой солью, изомеризуется в альдегид. Окисление камфена не дало каких-либо особенно ценных данных, и все более существенные результаты, проливающие свет на строение соединений камфорной группы, получены были (главным образом — Бредтом) при окислении камфоры (см.); теперь, когда уже известно, что скелеты камфена и камфоры разные, такой результат вполне понятен. В общем нужно указать, что имеется немало данных в пользу предположения, что продажный камфен, подобно некоторым другим Т., представляет смесь нескольких, (по меньшей мере двух) относительно весьма близких изомеров, увеличивающих разнообразие образующихся при разных реакциях продуктов, равно как понижающих количественный выход каждого из них. Из других реакций, важных для соединений камфорной группы, укажем, что под влиянием некоторых агентов (Р2О5 и др.) камфора переходит в парацимол, что указывает на параположение метильной и освобождающейся изопропильной групп. Далее, при действии на камфору крепкой серной кислоты (при 105—110° С) образуется продукт, в котором найдено до 25% карвенона (см. далее). Наконец, не особенно давно реализирован переход от йодгидрина борнеола (йодгидрата пинена) при обработке его уксусно-серебряной солью с уксусной кислотой в уксусный эфир терпинеола (?1-ментен-8-ола), что устанавливает близкую связь конфигурации соединений камфорной группы с конфигурацией терпинеола и, следовательно, еще раз подтверждает правильность формул Бредта. При номенклатуре производных камфорной группы, подобно тому, как Бэйер для пиненного кольца предложил название "пицеан", Бредт, считая свои формулы в камфорном ряду установленными, предложил для камфорного, а следовательно, и для борниленного и т. п. кольца — триметилпентаметиленного — название "камфоцеан". Борнилен. ?2-1-метил-7-диметилбицикло-(1,2,2\]-гептен: b65_052-1.jpg Углеводород этот, значение которого для разъяснения строения камфена весьма велико, получен искусственно лишь год тому назад при обработке йодгидрата пинена в особых условиях спиртовым едким кали (Вагнер и Брикнер) и при сухой перегонке метилового борнилксантогенового эфира C10H18OCSSCH3 (Чугаев). Борнилен плавится при 98° и кип. при 150°. При окислении почти количественно переходит в камфорную кислоту, что вполне определяет его строение и приводит к заключению, что он-то и есть настоящий Т., отвечающий камфоре и борнеолу. Образуется борнилен ксантогеновым способом как из борнеола, так и из изоборнеола, чем подтверждает тождество их структуры. Присоединяя HCl, образует новый хлоргидрат, плав. при 140—141°; при отнятии галоидоводорода дает новый Т., кипящий при темп. обыкновенного камфена, плавящийся выше — при 64—65°. Новый Т. при настаивании с уксусной и серной кислотой гидратируется и переходит в новый спирт, отвечающий хлоргидрату; плавится при темп. борнеола; уксусный эфир его не кристалличен; при окислении образует кетон. Во всех этих производных предполагается камфоцеанное кольцо. Открытие борнилена представляется весьма важным с теоретической точки зрения, так как теперь лишь можно утверждать, что ядро камфена не одинаково с ядром камфоры и проч. продуктов камфорной группы; углеводородом же, отвечающим этой группе, является борнилен. Фенхен получается дегидратацией фенхилового спирта; последний же образуется при восстановлении входящего в состав укропного и анисового масла кетона — фенхона С10Н16О, аналогичного камфоре; кроме того, фенхиловый алкоголь образуется, как уже было упомянуто, в числе продуктов гидратации пинена. Фенхен — углеводород с одной этиленной связью, след., соединение бициклическое. Строение его еще не установлено. Темп. кип, от 140—141° до 158—160°, уд. в. 0,8385—0,864, \[?\]D = от —55° до +43°; запах напоминает камфен. Туйен (танацетен), ?1-метил-1-изопропилбицикло-\[0,1,3\]-гексен, получен в самое недавнее время искусственно ксантогеновым методом из туйилового спирта; последний получается при восстановлении кетона — туйона (танацетона), входящего в состав многих масел, как-то: Ol. Thujae, Ol. Tanaceti, Ol. Absynthii, Ol. Salviae и др. Полученный таким образом Т. кип. при 151,5—152,5°, уд. в. 0,8275, nd = 1,45042 (20°); вычисленное отсюда молек. преломление 44,21 превышает теоретическое 43,54, но это же наблюдается и для туйилового алкоголя и для туйона и обусловливается, вероятно, о

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.