производят механическую работу, утилизируя теплоту, развиваемую при взрыве смеси светильного газа с воздухом или смеси нефтяных продуктов (бензина и керосина) с воздухом. Развиваемая при взрыве газов, т. е. при быстром горении, теплота значительно возвышает температуру и давление последних. Идея воспользоваться взрывом газов для производства механической работы не нова. Ее приписывают аббату Отфейлю, который еще в 1678 году составил проект машины для подъема воды, действующей взрывами пороха. Отфейль предлагал вводить порох в прямоугольный ящик, сообщающийся с трубкой, нижний конец которой был опущен в резервуар с водой. Силу расширения газов, развиваемую при взрыве пороха, Отфейль не имел намерения применить для непосредственного производства механической работы, а он полагал воспользоваться пустотою, которая происходит через охлаждение газов, оставшихся в цилиндре, и вода должна подниматься действием атмосферного давления. Следовательно, принцип машины Отфейля был принцип атмосферной машины. Применением взрывов пороха для производства механической работы занимались и другие инженеры, как-то: Гюгенс, Папин; но с изобретением паровой машины идея взрывчатой машины, т. е. идея применения силы расширенных газов, в продолжение долгого времени была совершенно забыта. Только с изготовлением Лебоном светильного газа из каменного угля возник вопрос о применении газа к Д. Лебон в дополнение к привилегии, взятой в 1799 г. на новые способы более выгодного потребления горючих веществ как для теплоты, так и для света, предлагает проект машины, действующей взрывами смеси светильного газа и воздуха. Он даже высказывает при этом мысль о необходимости сжатия смеси газа и воздуха до взрыва. Самому Лебону не удалось осуществить эти идеи и дать промышленности удобный Д. После Лебона многие изобретатели работали над применением взрывчатых тел и смесей различных газов (водорода, карбурированного воздуха и др.), но без всяких практических результатов. Это был период изобретения газовых Д., и только в 1860 г. Ленуару удалось построить газовый Д., названный им в привилегии moteur ? l'air dilat? par la combustion du gaz, который быстро распространился в мелких мастерских. Возбуждение, произведенное в промышленном мире этим первым Д., работающим правильно, без остановок, не требующим ни топки, ни парового котла, ни кочегара, ни запаса топлива и приводимого в действие мгновенно, одним повертыванием крана, было громадное. Не только громадную услугу газовый Д. Ленуара оказал мелкой промышленности, но его успех вызвал многочисленные усовершенствования, благодаря которым мы имеем теперь газовые Д. в 80-100 лошадиных сил, которые в состоянии выдержать борьбу с паровыми Д. В настоящее время различают четыре типа газовых Д.: Двигатели 1) со взрывом, но без сжатия, 2) со взрывом и сжатием; 3) с постепенным горением и сжатием, и 4) атмосферные и смешанные. В Д. первого типа, представителями которого будут Д. Ленуара и Югона, известное количество газа и воздуха всасывается под атмосферным давлением в цилиндр, прекращается сообщение с наружным воздухом, электрическая искра производит взрыв смеси, от происшедшего расширения газов поршень подвигается вперед, и газы расширяются до конца хода поршня; при обратном движении поршня газы выталкиваются наружу. Ряд этих физических изменений, происходящих периодически, называется циклом Д. Вместо того, чтобы всосать смесь газа и воздуха под атмосферным давлением и тотчас ее воспламенить, можно ее предварительно сжать до двух или трех атмосфер и затем взорвать ее в меньшем объеме, чем она прежде занимала, что происходит в машинах второго типа, Миллона, Отто, Клерка и многих других, т. е. в машинах с предварительным сжатием. Сжатие смеси может быть произведено в особом цилиндре или в цилиндре машины, который в таком случае должен быть снабжен особой камерой для сжатия, которая, конечно, увеличивает так называемое вредное пространство в цилиндре. Вместо мгновенного взрыва смеси при постоянном объеме можно произвести постепенное сгорание смеси при постоянном давлении, т. е. заставлять горючую смесь проходить над пламенем горелки. Это — третий тип газовых Д., представителями которых суть газомоторы Браутона и Симона. Четвертый тип газовых Д. резко отличается от Д. предыдущих типов. Отто и Ланген, которые первые построили Д. этого типа, полагали, что сильное нагревание цилиндра в машине Ленуара происходит оттого, что движение поршня весьма медленно. Поэтому они сделали в своей машине поршень независимым от момента взрыва, т. е. свободным в первой части цикла; поршень у них приходит в сцепление с рабочим валом только при обратном ходе, т. е. именно в тот период, когда он опускается под действием собственной тяжести и атмосферного давления. Цикл этого рода Д. будет следующий: всасывание смеси под атмосферным давлением, затем при достижении поршнем трети его хода происходит взрыв. Поршень без нагрузки идет легко кверху и не останавливается, выталкивая продукты горения наружу. О характере смеси светильного газа с воздухом, равно как о различных условиях, при которых взрыв этой смеси в газовых Д. различных типов происходит, было уже изложено (см. Газовые взрывы) и приведены соответствующие диаграммы циклов. При взрыве или горении газовой смеси в газовых Д. происходят только изменения температуры, давления и объемов газов, так что газовые Д. можно рассматривать как воздушные машины с внутренней топкой; следовательно, к ним применимы общие законы термодинамики, и, следовательно, возможно для каждого типа газовых Д. определить полезное действие. Машина будет тогда вполне совершенна, когда все количество доставляемой ей теплоты будет превращено в механическую работу, но практика показывает, и теория это предвидит, что полная утилизация теплоты немыслима, и поэтому, затрачивая известное число калорий Q, мы не производим работу, эквивалентную этому числу калорий Q, a всегда меньшую. Для производства работы недостаточно иметь один источник теплоты, но периодичность движения и продолжительность работы не могут быть осуществимы без помощи охладителя, которому нужно отдать часть теплоты q (число калорий), доставленной источником; разностью же Q-q возможно только воспользоваться для производства работы. Отношение Q-q к Q есть теоретическое полезное действие машины, или экономический коэффициент (coefficient ?conomique), который будет ? = (Q-q)/Q. Это теоретическое полезное действие вычисляется для каждого типа газового Д. из соответствующих циклов, которые состоят из адиабатических линий и линий, параллельных осям объемов и давлений. Но относительное достоинство отдельных газовых Д. выразится лучше через определение их теоретического полезного действия по отношению к полезному действию цикла Карно в тех же пределах температуры. Это огношение мы назовем относительным полезным действием машины (coefficient g?n?rique) и обозначим через ?1. По этим двум коеффициентам, т. е. по теоретическому полезному действию ? ? относительному полезному действию мы можем вернее судить о типе Д. По ? ?удят о самом принципе, на котором построена машина, а по ?1 о степени усовершенствования в осуществлении этого принципа; ?, конечно, не может быть изменено, так как оно зависит от возможной разности температур источника теплоты (в газовом Д., следовательно, от максимальной температуры, развиваемой при взрыве газовой смеси) и охладителя. Предполагая даже, что источник теплоты имеет наивысшую температуру 673° абсолютных (400° по Ц.), а охладитель абсолютный нуль (-278°), то ? не сможет быть более 60%. Оно всегда менее единицы. В действительности оно еще менее, так как мы не в состоянии осуществить вышеприведенные условия. Машины, имеющие большое ?, — машины будущего; машины же у которых ?1 близко к единице, достигли уже возможного совершенства и не сделают более существенного прогресса. Паровые машины в сравнении с газовыми Д. имеют меньшее теоретическое полезное действие (0,17), но значительно большее полезное действие (0,65). Сравнивая четыре выше приведенных типа газовых Д. по их ? и ?1, мы получим следующие величины:
-
| | ? | ?1 |
| - - - |
| I тип | 0,23 | 0,28 |
| - - - |
| II тип | 0,38 | 0,45 |
| - - - |
| III тип | 0,31 | 0,38 |
| - - - |
| IV тип | 0,36 | 0,42 |
- Д. второго типа, т. е. с предварительным сжатием, как видно из этой таблицы, являются наиболее совершенными газовыми Д. Напротив, Д. 1-го типа, т. е. без предварительного сжатия, оказываются наиболее невыгодными Д. Это, конечно, результаты теоретические, выведенные из рассмотрения принципов, лежаших в основе отдельных типов газовых Д. При этом теоретическом рассмотрении не обращалось внимания на действие, которое оказывают на цикл стенки цилиндра. Действительно, у всех газовых Д., сила которых больше одной или двух лошадиных сил, цилиндр охлаждается холодной водою, которая отнимает от цикла значительное количество теплоты. В опытах, произведенных Витцем в Рубе над прекрасным газовым Д. Отто, определено было, что эта поглощаемая водой теплота составляет 40% всей развиваемой при взрыве теплоты и 48% утилизируемой теплоты. Треска для Д. Ленуара определил эту потерю теплоты в 52%. Вообще принимают, что охлаждающая вода цилиндра отнимает половину теплоты горения израсходованного газа. Газовый Д. Отто новейшей конструкции в исправном состоянии расходует на силу 700-800 литров в час. При работе же вхолостую он расходует около 400 литров на силу в час, не производя ни одного килограмм-метра работы; почти вся теплота поглощается водою, употребляемой для охлаждения, но избежать охлаждения цилиндра не возможно. С целью выяснения условий, при которых возможно уменьшить это вредное влияние охлаждения водою, Витцем был предпринят ряд исследований. Он старался, так сказать, искусственно воспроизвести все явления взрыва и расширения газов, происходящие в цилиндре газового Д. Витц вывел из этих исследований следующие два закона: 1) утилизация газа растет со скоростью расширения газов и 2) горение взрывчатых смесей совершается тем быстрее, чем больше скорость расширения. Это значительное влияние быстроты расширения есть только следствие действия стенок. Как же можно иначе объяснить изменение совокупности всех взрывчатых явлений со скоростью расширения? Это можно — только охлаждением газов от прикосновения с металлической поверхностью, которое происходит в более или менее значительное время, причем поглощается теплота и уменьшается реакция. Это влияние обнаруживается не только на быстроте горения, но площадь диаграммы сокращается, работа уменьшается, утилизация понижается. Для того, чтобы наилучше воспользоваться теплотой, развиваемой взрывчатой смесью, необходимо произвести расширение продуктов горения в более короткое время и уменьшить по возможности поверхность цилиндра, другими словами: сделать S/V минимумом. То же самое явление наблюдал Вьейль; максимум взрыва зависит от отношения поверхности охлаждения приемника к объему газовой смеси. Так что экспериментальные исследования вполне подтвердили теорию о необходимости предварительного сжатия газовой смеси до взрыва. Кроме того, действию стенок цилиндра надо приписать замедление сгорания во время взрывов — явление, которое англичане определяют выражением slow combustion, a немцы — nachbrennen, т. е. часть газов не успевает сгорать при максимуме температуры, а сгорает во время охлаждения. Знание относительного полезного действия газового Д. известного типа еще недостаточно для суждения о достоинстве данной машины. В действительности никогда нельзя воспользоваться всей работой, производимой на поршень цилиндра, так как вследствие трения, ударов и инерции, вообще всех так называемых пассивных сопротивлений, утрачивается часть работы, доставляемой превращением теплоты в движение. Поэтому на рабочем вале мы всегда имеем только известную дробную часть полной (индикаторной) работы, производимой на поршень. Для вычисления этой общей работы снимают индикатором Уатта диаграммы давления. Достаточно определить среднее давление Pm на поршень; если его площадь S и его ход С, то работа, производимая поршнем, равна PmSL, выражая Pm в килограммах на квадр. сантиметр, S — в сантим. и С — в метрах. Поэтому если машина делает n оборотов в минуту, или n/60 в секунду, то работа P выразится в лошадиных силах (75 килограм. = 1-й лош. силе). P = (PmSCn)/(60x75) = (PmSCn)/4500 или, выражая площадь S как ?D2/4, где D есть диаметр цилиндра P = (Pm?D2Cn)/(4x4500) = (Pm?D2Cn)/18000. Следовательно, все сводится на определение среднего давления Pm, что достигается измерением диаграмм давления. Определение действительной работы, непосредственно утилизируемой на рабочем вале, производится посредством динамометрического тормоза Прони (см. Динамометры). Отношением действительной работы к индикаторной определяется механическое полезное действие (rendement m?canique) Д., которое для каждой машины будет особое, зависящее только от выполнения отдельных частей ее; следовательно, определено оно может быть только экспертизой. При экспертизе газовых Д. необходимо определить диаметр и ход поршня, длину камеры горения или объем вредного пространства, число оборотов, температуру циркулирующей воды при поступлении и выходе из оболочки цилиндра, количество потребленных газа и смазочного масла на силу-час, работу тормоза. Сравнивая количество потребляемого газа на силу-час, определяемое экспертизой, с количеством газа, вычисляемым теоретически из цикла для каждого типа Д., принимая при этом тепловую способность каменноугольного газа равною 5400 калориям, мы можем определить коэффициент полезного употребления (coefficient d'utilisation pratique)
-
| | Теоретическое | Действительное | Коэффициент |
| Тип | потребление газа в | потребление в | практического |
| | литр. на силу-час | литрах на силу-час | потребления |
| - - - - |
| I | 522 | 2000 | 0,26 |
| - - - - |
| II | 816 | 700 | 0,45 |
| - - - - |
| III | 387 | 900 | 0,43 |
| - - - - |
| IV | 285 | 650 | 0,44 |
- Из этого сравнения газовых Д. различных типов по коэффициенту практического потребления видно, что газовые Д. второго и четвертого типа и в практике сохраняют свое первенство, которое дано им теорией; за ним следуют газовые Д. третьего типа. Что же касается газовых Д. первого типа, т. е. Д. со взрывом без предварительного сжатия, то они занимают низшее положение: не только их цикл менее совершенен, но он и худо осуществлен, так как коэффициент практическ. потребления не превосходит 0,26. Это объясняется тем, что в этих Д., как показывает опыт, более 75% развиваемой при взрыве теплоты отдается охладителю. Количество расходуемого газа на силу-час зависит от тепловой способности газа: так, газы более бедные, как водяной и Давсоновский газы, расходуются в большем количестве, чем каменноугольный. Мы опишем здесь устройство двух газовых Д. — Ленуара, как первого газового Д., получившего практическое применение, и Д. Отто, как наиболее совершенного и наиболее распространенного в настоящее время. Д. Ленуара есть Д. первого типа, незначительно отличающийся от типа паров, машин. На рис. 1 он изображен в том виде, который он имел в 1860 г., когда был изобретен. b19_175-1.jpg Рис. 1. Двигатель Ленуара. Он состоит из цилиндра А с водяной рубашкой; по бокам находятся золотники Т и Т1 для впуска газа D и выпуска продуктов горения, которые приводятся в действие эксцентриками Е. Стержень поршня имеет в В направляющую коробку и обхватывается шатуном, который и передает движение валу. Воспламенение газа производится спиралью Румкорфа R; искра в b1 воспламеняет смесь. Д. Ленуара есть машина двойного действия. Газ по трубке с двумя рукавами поступает в две цилиндрические коробки, имеющие каждая прямоугольное отверстие на стороне, обращенной к золотнику. Золотник сделан из бронзы; на нем сделаны прямоугольные желобки для впуска воздуха. Эти желобки имеют диаметр в 2 мм и чередуются с отверстиями в 6 мм. Газ из коробок поступает по трубкам, а наружный воздух проникает через отверстия; таким образом струи газа и воздуха хорошо смешиваются, образуя взрывчатую смесь. Золотник для выхода продуктов горения одинаково устроен, как золотник для впуска газа и воздуха, только не имеет трубки для смешения газов, продукты горения выводятся в особый коллектор. Для приведения в действие Д., нужно повернуть маховик, чтобы подвинуть поршень, который всосет смесь: искра воспламеняет последнюю, и взрывом поршень доходит до конца своего хода. Вследствие инерции маховика поршень движется в обратную сторону и всасывает взрывчатую смесь. По причине большого расхода газа и сильного нагревания стенок цилиндра этот газовый Д., несмотря на простоту его устройства, уступил более сложным, но более экономичным Д. второго типа, представителем которого является Д. фабрики Отто в Дейтце на Рейне. Цилиндр этого двигателя горизонтальный, открытый спереди. Поршень действует при посредстве шатуна. Вал снабжен сильным маховиком, роль которого в этом двигателе громадна. На два оборота вала только пол-оборота производит движущее действие. Действительно, при первом ходе поршня всасывается взрываемая смесь; при следующем, обратном движении поршня эта смесь сдавливается в камере, объем которой равняется четырем десятым всего объема цилиндра; затем происходит взрыв, и поршень идет вперед, производя работу; поршень возвращается вторично назад и выгоняет продукты горения наружу. Следовательно, из четырех ходов один рабочий, и поэтому маховик должен в этот момент запасаться живой силою для расходования ее в продолжение трех остальных ходов, не изменяя значительно скорости вращения. Поэтому у двигателей Отто маховик должен быть очень массивный. На рис. 2, 3 и 4 представлен этот двигатель в плане, а на рис. 5 изображен разрез золотника и цилиндра. b19_175-2.jpg Рис. 2. Двигатель Отто Все операции в газовом двигателе, как-то: всасывание, сжатие, взрыв, расширение и выпуск продуктов горения, производятся в одном цилиндре при посредстве единственного поршня, один золотник производит зажигание и впуск газа; клапан выпускает наружу газы. Все необходимые для этих действий механизмы приводятся в действие стержнем bb', который получает движение от вала через посредство двух конических зубчатых колес I. Этот стержень делает один ход, в то время как маховик совершает два оборота. На конце bb' находится мотыль k, который сообщает попеременное движение шатуну H, непосредственно соединенному с золотником Е. На стержне bb' находятся еще два пальца: один С, который может перемещаться от действия регулятора, действует на впускной клапан F (рис. 2) газа; другой B — действует через посредство рычага G на клапан для выпуска продуктов горения S. Два зубчатые колеса L обусловливают вращение шарового регулятора R, который перемещает муфту пальца С по стержню bb', и палец перестает действовать на рычаг, управляющий клапаном F. На рис. 6 изображено схематически отношение движения золотника к движению поршня. b19_176-2.jpg Рис. 6 Мотыль поршня M начинает свое движение в точке M и совершает путь MNOP; мотыль К находится на 45° позади, начинает свое движение в точке m. M, m, N, n, O, о, P и p суть соответствующие положения M и К, а х, у, z и r — будут относительные положения золотника. Отсюда видны пути, пройденные в одно и то же время тремя различными частями.
-
| Мотыль М | Мотыль К | Золотник E | Фазы |
| - - - - |
| путь MN | тп | zxz | всасывание |
| - - - - |
| NO | no | zr | сжатие |
| - - - - |
| ор | op | ryr | взрыв |
| - - - - |
| PM | pm | rz | выпуск |
- Во время всасывания клапан F и золотник E (рис. 5) открыты; b19_177-1.jpg Рис. 5. Золотник и поршень Д. Отто газ поступает в F и идет по трубе и через отверстие d в золотник E; воздух поступает через отверстие р; взрывчатая смесь входит через rn в цилиндр. Во время сжатия смеси золотник перемещается из ssr и закрывает отверстие m. Золотник остается закрытым в продолжение двух следующих периодов; выпуск газов совершается через боковое отверстие L и клапан s (рис. 4). b19_176-3.jpg Рис. 4. Двигатель Отто Снизу у ? (рис. 3) газ поступает к горелке, необходимой для воспламенения горючей смеси. В новейших двигателях, вместо газового пламени, для воспламенения употребляют раскаленную фарфоровую, никелевую или платиновую трубки. b19_176-1.jpg Рис. 3. Двигатель Отто Вода, служащая для охлаждения цилиндра, поступает в трубку q (рис. 5); с помощью крана можно регулировать ее приток; надо наблюдать, чтобы температура ее не была выше 85°. Вода выходит из цилиндра через трубку n (рис. 2). В тех случаях, где нет водопровода, устанавливают вблизи двигателя бак с водою таким образом, чтобы уровень воды в последнем на 20 см был выше трубки n. Количество воды, необходимое для охлаждения цилиндра, принимают 400-500 литр. на лошадиную силу. Газовые двигатели снабжены резервуарами как для всасывания, так и для выпуска продуктов горения, чем и обусловливается главн. образом бесшумный ход двигателя. Газ должен доставляться к клапану F по газопроводной трубке, имеющей не менее 40 мм в поперечнике, если двигатель четырехсильный. На этой газопроводной трубе необходимо поместить каучуковый мешок, необходимый для запаса газа, так что поршень не всасывает газ непосредственно из газопровода. Емкость этого мешка должна быть по крайней мере в 25 раз больше объема газа, всасываемого поршнем двигателя. Газовый двигатель должен быть установлен на прочном цоколе из бетона или плитного камня в помещении, которое позволяет свободный обход около двигателя. Краны от водопровода и газопровода, равно как каучуковый мешок, должны быть расположены на ближайшей к двигателю стене. При хорошо очищенном газе чистка газового двигателя производится раз в месяц. В прежнее время газовые двигатели находили применение только в мелкой промышленности, поэтому их обыкновенно делали в 2-4-8 сил; но с понижением цен на газ для Д. стали изготовлять газовые Д. в 50, 80 и даже 100 лошадиных сил. Быстрое распространение газовых Д. лучше всего видно из отчета фабрики Отто в Дейтце, составленного для Всемирной выставки в Париже. Эта фирма с 1876 по 1889 г. выпустила из своей фабрики 31000 Д., общая сила которых равняется 10000 лошадиных сил. Наибольшее количество Д. продано в Англию (12800), где 1 куб. м газа обходится обыкновенно не более 15 сантимов, наименьшее число (350) в Россию, где всего 24 города освещаются газом. Кроме фабр. Отто, существует в Европе много других фабр. которые ежегодно изготовляют в большом количестве газовые Д. В. Д. керосиновые основаны на том же принципе, как и газовые Д. Вместо смеси газа с воздухом действует смесь паров керосина с воздухом. Для этой цели в одних Д. керосин накачивается особого рода помпочкою, а в других, как в Д. Отто и Яковлева, самотеком. Поступивший керосин сперва превращается в испарителе в пар и затем смешивается с воздухом; воспламение гремучей смеси обыкновенно производится раскаленою фарфоровою или никелевой трубочкой: регулирование хода в Д. Отто — центробежным регулятором, который делает пропуски в поступлении керосина в реторту. В последние годы в России керосиновые Д. получили большое распространение. В Петербурге существуют два завода, Лангезипена и Яковлева, изготавливающие в большом количестве керосиновые Д., которые были выставляемы на всех выставках в Петербурге и Москве. Д. Яковлева в своей новой конструкции представляет много особенностей. Испаритель в этом двигателе представляет чугунную коробку, состоящую из целого ряда наклонных плоскостей, по которым стекает постепенно керосин, так что образуется весьма большая испарительная поверхность; так как нагревание испарителя производится через стенку газами, исходящими из цилиндра, то смешение паров керосина с исходящими газами невозможно. b19_177-2.jpg Рис. 7. Керосиновый двигатель Яковлева. Это весьма важная особенность в Д., что он утилизирует для нагревания теплоту исходящих газов. В том месте испарителя, где образуются пары керосина, входит навстречу последним воздух, нагретый также теплотою исходящих из цилиндра газов. Другая особенность Д. Яковлева — это регулирование хода. Во всех керосиновых Д. ход регулируется подачею керосина, между тем в Д. Яковлева регулируется количество гремучей смеси, поступающей каждый раз в цилиндр. Центробежный регулятор прикрывает впускной кран особым клином, вследствие чего изменяется ход клапана и количество пропускаемой гремучей смеси. Воспламенение производится фарфоровой трубкой, которая поддерживается в раскаленном состоянии особой, весьма удобной керосиновой горелкой, помещаемой в кожухе, выложенной асбестом. Распределительная клапанная коробка, в которую поступает гремучая смесь паров керосина и воздуха, имеет два клапана, расположенных один над другим. Верхний клапан подвешен на пружине, напряжение которой можно регулировать; он автоматически открывается вниз в камеру, сообщающуюся с цилиндром, каждый раз когда в цилиндре происходит расширение. При этом в цилиндр поступает известная порция гремучей смеси через то же отверстие, через которое выходили отработанные газы. В другие фазы работы Д. впускной клапан закрыт внутренним давлением из цилиндра. Нижний выпускной клапан, открывающийся внутрь коробки, при помощи эксцентрика, во время всасывания закрывается сильной пружиной. В недавнее время были произведены экспертизы над различными керосиновыми Д. с целью выяснить как их относительное достоинство между собою, так и вообще для сравнения их с газовыми и другими Д. Из опубликованных до настоящего времени наиболее обстоятельные экспертизы керосиновых Д. были произведены в Англии над Д. Пристмана проф. Унвином (Unvin) и инженером Робинсоном. Д. Пристмана с горизонтальным цилиндром; подача керосина в испаритель, нагреваемый отработанными газами, совершается непрерывно посредством воздушного насоса, который в то же время служит и для распыления керосина. Регулятор изменяет количество поступающего в испаритель керосина и изменяет давление в конце сжатия смеси и давление после ее взрыва. Воспламенение производится электрической искрой. Давление в конце сжатия горючей смеси от 1,75-2,50 кг на 1 кв. см. Испытания производились с 5-сильным двигателем; диаметр рабочего цилиндра 216 мм, ход поршня 305 мм, число оборотов в минуту 200, так что секундная скорость около 2 метр. Диаграммы снимались индикатором Crosby и Mac Innes. Действительная работа измерялась веревочным тормозом. Расход керосина измерялся по объему. Опыты велись с русским (0,8226) и американским (0,7930) керосинами; температура воспламенения первого была при 30°, второго при 25°. Проф. Унвин, произведя химический анализ обоих керосинов, вычислил их тепловую способность на 1 кг, для первого 11000, для второго — в 12300 калорий. Во время испытания Д. заставляли работать с полной нагрузкой, полунагруженным и вхолостую. Когда Д. работал с полной нагрузкой, утилизация керосиновых паров была совершенная, а при слабой нагрузке и вхолостую Д. более или менее сильно дымил. При работе Д. в 9 индикаторных сил температура выходящих газов доходила до 375°, а при работе вхолостую — до 173°. Расход керосина на 1 индик. силу-час в кг:
-
| | С полной | С половинной | Вхолостую |
| | нагрузкой | | |
| - - - - |
| Русского | 0,390 | 0,435 | 2,60 |
| - - - - |
| " | 0,320 | - | - |
| - - - - |
| Американского | 0,316 | - | - |
- Расход керосина при полной нагрузке менее, чем когда Д. работал свободно, малонагруженный, — то же самое, что наблюдается при газовых Д. Американского керосина расходуется на 1 силу-час менее, чем русского. Проф. Унвин определил отношение калорий, обращенных в индикаторную и тормозную работу, к числу калорий, освободившихся при сгорании керосина во время этой работы, и назвал это отношение абсолютным термическим коэффициентом полезного действия. В трех различных опытах с двумя керосинами он получил абсолютный терм. коэффициент полезного действия:
-
| | Отнесенный к | Отнесенный к |
| | индикат. силе | тормозн. силе |
| - - - |
| Опыт № 1 | 0,152 | 0,139 |
| - - - |
| " 4 | 0,161 | 0,133 |
| - - - |
| " 5 | 0,188 | 0,155 |
- Опыты показали, что лучшие результаты получаются с американским, более легким и имеющим низшую температуру воспламенения. Керосиновый Д., как видно из вышеприведенных чисел, утилизирует не много теплоты, в наилучшем случае около 15,5%. Проф. Уивин в одном опыте определил расход теряемой теплоты и нашел, что тратится:
-
| На тормозную работу | 13,31% |
| - - |
| На работу трения в машине | 2,81% |
| - - |
| На индикаторную работу | 16,12% |
| - - |
| Унесено водою [/!