К статье ИГР ТЕОРИЯ
При анализе любой игры важно знать, в какой степени одному игроку известны стратегии, сделанные ходы и индивидуальные выборы другого игрока. В салонных играх эта информация заложена в явном виде в правилах игры. В военной игре эти сведения определяются широтой и глубиной разведывательной информации; однако следует также учитывать и разведывательную деятельность противника.
В шашках, шахматах, китайских шашках и в игре в крестики-нолики каждый игрок располагает т.н. "полной информацией". Это означает, что каждый игрок в любой момент времени полностью информирован о всех предыдущих ходах, сделанных в процессе игры, что позволяет придать простую математическую структуру любой конечной игре этого типа. Игру с полной информацией удобно изображать в виде дерева (или графа) с вершинами (черными и белыми кружками), соединенными ребрами. Играя в простую игру, изображенную на рис. 1, первый игрок (белые) помещает фишку в самую нижнюю вершину. Второй игрок (черные) может, делая ход, поставить фишку в любую соседнюю вершину, он выбирает ребро, исходящее из нижней вершины, и ставит свою фишку в ближайшую вершину, расположенную на следующем уровне. Так продолжается до тех пор, пока фишка не достигнет одного из треугольников. Платеж, получаемый белыми от черных, определяется треугольником, на котором фишка завершит свой путь. На рис. 1 платеж колеблется от +30 единиц до ?50 (белые могут либо выиграть 30 единиц у черных, либо проиграть им 50).
Чтобы представить в виде дерева игру в шашки, каждая вершина должна означать одно из возможных расположений всех шашек на доске, а число ребер, исходящих из вершины, должно соответствовать количеству возможных ходов для игрока, играющего соответственно белыми или черными. В данном конкретном примере видно (и можно доказать, что так же обстоит дело и в общем случае), что в любой игре с полной информацией каждый из игроков может определить свою "наилучшую" стратегию. В модели игры, изображенной на рис. 1, черные могут заставить белых уплатить по крайней мере 5 единиц; кроме того, если белые будут придерживаться правильной стратегии, то черные не смогут выиграть больше 5 единиц несмотря на выбранную ими стратегию. Заметим, однако, что если бы игра состояла только из правой половины дерева, то наилучшая стратегия гарантировала бы белым проигрыш в 2 единицы; при менее удачной стратегии белые могли бы проиграть 10.
Теоретически шахматы и шашки имеют такую же структуру, как и приведенный выше более тривиальный пример. Однако представить эти игры в виде деревьев настолько сложно, что их полный анализ никогда не производился. Имеются некоторые основания полагать, что если оба игрока придерживаются оптимальных стратегий, то игра в шашки должна заканчиваться вничью, а в шахматы всегда должны выигрывать белые, делающие по правилам первый ход.