функциональный определитель -aik-1n с элементами , где yi fi ( X1 , ... , Xn ), l £ i £ n , - функции, имеющие непрерывные частные производные в некоторой области А; обозначение:
.
Введён К. Якоби (1833, 1841). Если, например, n 2, то система функций
y1 f1 (. x1, x2 ), y2 f2 ( x1 , x2 ) (1)
задаёт отображение области D, лежащей на плоскости x1 , x2 , на часть плоскости y 1, y 2. Роль Я. для этого отображения во многом аналогична роли производной для функции одной переменной. Например, абсолютное значение Я. в некоторой точке М равно коэффициенту искажения площадей в этой точке (т. е. пределу отношения площади образа окрестности точки М к площади самой окрестности, когда размеры окрестности стремятся к нулю). Я. в точке М положителен, если отображение (1) не меняет ориентации в окрестности точки М , и отрицателен в противоположном случае. Если Я. не обращается в нуль в области D и j ( y1 , у2 ) - функция, заданная в области D1 (образе D), то
(формула замены переменных в двойном интеграле). Аналогичная формула имеет место для кратных интегралов . Если Я. отображения (1) не обращается в нуль в области Д, то существует обратное отображение
x1 j 1 ( y1 , y2 ), x1 j2( y 1, y2),
причём
(аналог формулы дифференцирования обратной функции). Это утверждение находит многочисленные применения в теории неявных функций . Для возможности явного выражения в окрестности точки М (x1(0),..., xn (0, y1(0),..., ym (0)) функций y1,..., ут, неявно заданных уравнениями Fk (x1,..., xn, y1,..., ум) 0, (2)
1 £ k £ m,
достаточно, чтобы координаты точки М удовлетворяли уравнениям (2), функции Fk имели непрерывные частные производные и Я.
был отличен от нуля в точке М.
Лит.: Кудрявцев Л. Д., Математический анализ, 2 изд., т. 2, М., 1973; Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.