электронный прибор, в котором в результате поглощения энергии падающего на него оптического излучения генерируется эдс ( фотоэдс ) или электрический ток (фототок). Действие Ф. основывается на фотоэлектронной эмиссии или фотоэффекте внутреннем .
Ф., действие которого основано на фотоэлектронной эмиссии, представляет собой (рис., а ) электровакуумный прибор с 2 электродами v фотокатодом и анодом (коллектором электронов), помещенными в вакуумированную либо газонаполненную стеклянную или кварцевую колбу. Световой поток, падающий на фотокатод, вызывает фотоэлектронную эмиссию с его поверхности; при замыкании цепи Ф. в ней протекает фототок, пропорциональный световому потоку. В газонаполненных Ф. в результате ионизации газа и возникновения несамостоятельного лавинного электрического разряда в газах фототок усиливается. Наиболее распространены Ф. с сурьмяно-цезиевым и кислородно-серебряно-цезиевым фотокатодами.
Ф., действие которого основано на внутреннем фотоэффекте, v полупроводниковый прибор с гомогенным электронно-дырочным переходом ( рvn -переходом) ( рис. , б) , полупроводниковым гетеропереходом или контактом металл-полупроводник (см. Шотки диод ) . Поглощение оптического излучения в таких Ф. приводит к увеличению числа свободных носителей внутри полупроводника . Под действием электрического поля перехода (контакта) носители заряда пространственно разделяются (например, в Ф. с рvn -переходом электроны накапливаются в n -oбласти, а дырки v в р -области), в результате между слоями возникает фотоэдс; при замыкании внешней цепи Ф. через нагрузку начинает протекать электрический ток. Материалами, из которых выполняют полупроводниковые Ф., служат Se, GaAs, CdS, Ge, Si и др.
Ф. обычно служат приёмниками излучения или приёмниками света (полупроводниковые Ф. в этом случае нередко отождествляют с фотодиодами ) ; полупроводниковые Ф. используют также для прямого преобразования энергии солнечного излучения в электрическую энергию v в солнечных батареях , фотоэлектрических генераторах .
Основные параметры и характеристики Ф. 1) Интегральная чувствительность (ИЧ) v отношение фототока к вызывающему его световому потоку при номинальном анодном напряжении (у вакуумных Ф.) или при короткозамкнутых выводах (у полупроводниковых Ф.). Для определения ИЧ используют, как правило, эталонные источники света (например, лампу накаливания с воспроизводимым значением цветовой температуры нити, обычно равным 2840 К). Так, у вакуумных Ф. (с сурьмяно-цезиевым катодом) ИЧ составляет около 150 мка/лм, у селеновых v 600v700 мка/лм, у германиевых v 3×104 мка/лм. 2) Спектральная чувствительность v величина, определяющая диапазон значений длин волн оптического излучения, в котором практически возможно использовать данный Ф. Так, у вакуумных Ф. с сурьмяно-цезиевым катодом этот диапазон составляет 0,2v0,7 мкм, у кремниевых v 0,4v1,1 мкм, у германиевых v 0,5v2,0 мкм. 3) Вольтамперная характеристика v зависимость фототока от напряжения на Ф. при постоянном значении светового потока; позволяет определить оптимальный рабочий режим Ф. Например, у вакуумных Ф. рабочий режим выбирается в области насыщения (область, в которой фототок практически не меняется с ростом напряжения). Значения фототока (вырабатываемого, например, кремниевым Ф., освещаемым лампой накаливания) могут при оптимальной нагрузке достигать (в расчёте на 1 см2 освещаемой поверхности) несколько десятков ма (для кремниевых Ф., освещаемых лампой накаливания), а фотоэдс v нескольких сотен мв. 4) Кпд, или коэффициент преобразования солнечного излучения (для полупроводниковых Ф., используемых в качестве преобразователей энергии), v отношение электрической мощности, развиваемой Ф. в номинальной нагрузке к падающей световой мощности. У лучших образцов Ф. кпд достигает 15v18%.
Ф. используют в автоматике и телемеханике, фотометрии, измерительной технике, метрологии, при оптических, астрофизических, космических исследованиях, в кино- и фототехнике, факсимильной связи и т.д.; перспективно использование полупроводниковых Ф. в системах энергоснабжения космических аппаратов, морской и речной навигационной аппаратуре, устройствах питания радиостанций и др.
Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи М 1971.
М. М. Колтун.