Значение слова ФОРМАЛИЗАЦИЯ в Большой советской энциклопедии, БСЭ

Что такое ФОРМАЛИЗАЦИЯ

представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации научных теорий) в виде формальной системы , или исчисления . Ф., осуществляемая на базе определённых абстракций, идеализаций и искусственных символических языков, используется прежде всего в математике (см. Математический формализм ) , а также в тех науках, в которых применение математического аппарата достигает достаточной для этой цели степени зрелости. Ф. предполагает усиление роли формальной логики как основания теоретических наук, поскольку в случае формализованных теорий уже нельзя удовлетворяться интуитивным убеждением, что та или иная аргументация согласуется с логическими правилами, усвоенными благодаря так или иначе приобретённой способности к правильному мышлению. Полностью могут быть формализованы лишь элементарные теории с простой логической структурой и небольшим запасом понятий (например, исчисление высказываний и узкое исчисление предикатов v в логике, элементарная геометрия v в математике). Если же теория сложна, она принципиально не может быть полностью формализована (см. Полнота , Метатеория ).

Ф. позволяет систематизировать, уточнить и методологически прояснить содержание теории, выяснить характер взаимосвязи между собой различных её положений, выявить и сформулировать ещё не решенные проблемы. Ф. как познавательный приём v в частности Ф. в узком 'математическом' смысле v носит относительный характер: одна и та же теория может быть одновременно и средством Ф. (некоторой другой теории и области явлений), и предметом Ф. (в более 'формальной' теории). Так, традиционная 'формальная' логика является Ф. по отношению к совокупности отражённых в ней закономерностей человеческого мышления; по отношению же к своим (аксиоматическим) Ф. она выступает в качестве содержательной теории предмета формализации

.

Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, ¬ 15; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М.. 1960, Введение.

Большая советская энциклопедия, БСЭ.