электрических колебаний, устройство, предназначенное для усиления электрических (электромагнитных) колебаний в системах многоканальной связи, радиоприёмной, радиопередающей, измерительной и др. аппаратуре. Такое усиление представляет собой процесс управления источником энергии (источником питания У. э. к.) в результате воздействия на него усиливаемых колебаний через усилительный элемент v чаще всего транзистор , электронную лампу , туннельный диод , параметрический диод, вариконд или индуктивности катушку с сердечником из ферромагнитного материала и др. При этом существенно, что управляемая мощность P 0 (источника питания) заметно превышает управляющую P 1 (источника усиливаемых колебаний), называется входной мощностью ( рис. 1 ). Часть P 0, отдаваемая во внешнюю цепь (в нагрузку), именуется выходной мощностью P 2 В отличие от пассивной цепи, т. е. цепи, не содержащей источника энергии, например трансформатора электрического , коэффициент усиления мощности (коэффициент передачи) У. э. к. Kp P 2 / P 1 > 1 . Наряду с усилением мощности У. э. к. способен усиливать напряжение и ток источника колебаний, что оценивается коэффициентом усиления напряжения K u U 2/ U 1 и коэффициентом усиления тока K i I 2/ I 1( U 1 , I 1 и U 2 , I 2 v напряжение и ток соответственно на входе и выходе У. э. к.).
В одних приборах (например, лабораторных генераторах электрических колебаний) У. э. к. используется для усиления гармонических колебаний , в других (например, радиоприёмниках ) v для усиления сигнала сложной формы, представляющего собой сумму множества гармонических колебаний с разными частотами и амплитудами. В оощем случае У. э. к. служит для повышения уровня сигналов различного вида, которое оценивается прежде всего величиной K p . Простейший У. э. к. выполняют на 1 усилительном элементе. При необходимости получения K p , большего, чем такой У. э. к. может обеспечить, применяют более сложный У. э. к., содержащий несколько каскадов усиления .
Классификация У. э. к. В зависимости от вида применяемых усилительных элементов различают транзисторные и ламповые У. э. к., диодные регенеративные усилители, параметрические усилители , диэлектрические усилители , магнитные усилители , усилители на клистронах и лампах бегущей волны , квантовые усилители (см. также Мазер ) .
В транзисторных У. э. к., собранных на биполярных транзисторах или полевых транзисторах , в зависимости от того, какой из выводов усилительного элемента является общим для входа и выхода усилительного каскада, различают каскады с общим эмиттером или истоком ( рис. 2, а и б ), с общей базой или затвором ( рис. 2, б и г ) и с общим коллектором или стоком. В У. э. к. на биполярных транзисторах из-за наличия входного тока на управление транзистором приходится затрачивать определённую мощность. Этот недостаток в меньшей мере присущ каскадам с общим эмиттером (обладающим сравнительно большим входным сопротивлением v до нескольких ком ) , в большей v каскадам с общей базой (десятки ом ) . Кроме того, первые обеспечивают K p , на порядок больший, чем вторые (несколько тыс.), что является их основным преимуществом. Каскады с общей базой, однако, более устойчивы в работе, менее критичны к изменениям температуры или смене транзистора, вносят весьма небольшие нелинейные искажения; они используются преимущественно в оконечных ступенях мощных У. э. к. Полевой транзистор по своим основным параметрам (крутизне характеристик, входному сопротивлению, напряжению отсечки и др.) v весьма близкий аналог электронной лампы, используемой в ламповых У э. к. (по способу использования электродов ей аналогичны как полевой, так и биполярный транзисторы: катоду соответствуют исток и эмиттер, сетке v затвор и база, аноду v сток и коллектор). Это позволяет применять результаты исследований ламповых каскадов с общим катодом, сеткой или анодом к соответствующим каскадам на полевых транзисторах.
Всякий У. э. к. характеризуется полосой пропускания частот. Если нижняя граничная частота полосы сколь угодно близка к нулю, имеем постоянного тока усилитель , если же она отделена от нуля конечным интервалом, v усилитель переменного тока (таков, например, видеоусилитель ) . Различают селективные (избирательные) и апериодические (неизбирательные) У. э. к. К селективным относятся усилители колебаний принимаемой (высокой) и промежуточной частот радиоприёмника; первые обычно содержат каскады с колебательными контурами (или резонаторами ) , настроенными на одну и ту же частоту, вторые v полосовые электрические фильтры , позволяющие приблизить форму амплитудно-частотной характеристики У. э. к. к идеальной (прямоугольной). В группу апериодических У. э. к. входят усилители звуковой частоты, видеоусилители, усилители импульсных сигналов и др.
Примеры практического использования У. э. к. Усилитель промежуточной частоты радиоприёмного устройства в одних вариантах содержит несколько каскадов с двухконтурными ( рис. 3 ) или более сложными электрическими фильтрами, в других он может представлять собой апериодический усилитель с высокоселективными системами во входной и выходной цепях.
В мощных радиопередающих устройствах находит применение ламповый усилитель ВЧ. В оконечном каскаде такого У. э. к. ( рис. 4 ) нагрузкой служит передающая антенна, обычно связанная с усилителем посредством фидера .
В транзисторных усилителях систем многоканальной связи ширина полосы зависит от числа телефонных каналов: при 300 каналах она лежит в пределах 60v1300 кгц, при 1920 v верхняя граница приближается к 9 Мгц, при 10800 v к 60 Мгц. Например, усилитель на 300 каналов ( рис. 5 ) обычно содержит 3 каскада с общим эмиттером, охваченных глубокой смешанной обратной связью (последовательно-параллельной по входу и выходу), позволяющей получить достаточно высокую выходную мощность и удовлетворить весьма жёстким требованиям, предъявляемым к допустимому уровню нелинейных искажений в системах дальней телефонной связи. При помощи такой обратной связи удаётся также реализовать не зависящие от усилительных свойств каскадов входное и выходное сопротивления и притом таких значений, которые обеспечивают согласование с подключенными к У. э. к. линиями, например коаксиальными кабелями .
Транзистор T4, включенный по схеме с общей базой, соединён последовательно с транзистором T3, образуя с ним т. н. каскодный усилит. каскад (с широкой полосой пропускания и повышенной линейностью).
Операционный усилитель, применяемый для выполнения определённых математических операций v суммирования, дифференцирования, интегрирования и т.д., v представляет сооой усилитель постоянного тока с большим коэффициентом усиления KU (достигающим 105), обычно в интегральном исполнении (см. Микроэлектроника ) . В комплексе с внешними элементами, образующими цепь обратной связи, операционный усилитель получил название решающего усилителя , он используется в вычислительной технике. В операционном усилителе ( рис. 6 ) имеются неинвертирующий вход (обеспечивающий в процессе усиления совпадение полярностей поданного на него сигнала и сигнала на выходе) и инвертирующий (полярность изменяется на противоположную). Это свойство придаёт усилителю его первый каскад, выполненный по т. н. дифференциальной схеме, реагирующей на разность входных напряжений (в результате сигналы с разной полярностью складываются, а с одинаковой v вычитаются и при столь большом KU практически не влияют на выходной сигнал). Инвертирующий вход обычно используется и для создания отрицательной или частотно-зависимой обратной связи.
Усилитель звуковой частоты, используемый, например, при звукоусилении , обычно заканчивается двухтактным каскадом усиления.
Такой каскад содержит 2 усилительных элемента, работающих со сдвигом фаз усиливаемых колебаний на 180|. Для возбуждения двухтактного каскада, состоящего из однотипных усилительных элементов (например, транзисторов р v п v р -типа), используют фазоинверсный предоконечный каскад ( фазоинвертор ) или трансформатор, вторичная обмотка которого имеет вывод от средней точки ( рис. 7 ); каскад, содержащий разнотипные элементы (т. н. комплементарные структуры, например транзисторы р v n v р- и n v р v n -типов), возбуждается от источника однофазного напряжения, т. е. от обычного однотактного каскада, и в этом случае отпадает необходимость применения трансформатора. По сравнению с однотактным каскадом двухтактный позволяет получать гораздо большую выходную мощность с меньшими нелинейными искажениями. Распространены бестрансформаторные У. э. к. звуковой частоты на транзисторах: одиночных комплементарных (с выходной мощностью до 1 вт ) и т. н. составных (с выходной мощностью несколько десятков вт и более). Отсутствие трансформаторов допускает изготовление У. э. к. в виде полупроводниковых и гибридных интегральных микросхем.
Ламповый усилитель большой мощности используется на узлах проводного вещания и в радиопередатчиках (в качестве модуляционного устройства). Он обычно содержит 4 двухтактных каскада, охваченных сравнительно глубокой отрицательной обратной связью с целью уменьшения нелинейных искажений, снижения фона на выходе и получения небольшого выходного сопротивления.
Лит.: Лурье Б. Я., Проектирование транзисторных усилителей с глубокой обратной связью, М., 1965; Калихман С. Г., Левин Я. М., Основы теории расчёта радиовещательных приёмников на полупроводниковых приборах, М., 1969: Радиопередающие устройства, М., 1969; Цыкин Г. С., Усилительные устройства, М., 1971; Войшвилло Г. В., Усилительные устройства, М., 1975.
Г. В. Войшвилло.