Значение слова КРИОЭЛЕКТРОНИКА в Большой советской энциклопедии, БСЭ

КРИОЭЛЕКТРОНИКА

криогенная электроника, направление, охватывающее исследование взаимодействия электромагнитного поля с электронами в твёрдых телах при криогенных температурах (ниже 90К) и создание электронных приборов на их основе. В криоэлектронных приборах используются различные явления: сверхпроводимость металлов и сплавов, зависимость диэлектрической проницаемости некоторых диэлектриков от электрического поля, появление у металлов при Т < 80К полупроводниковых свойств при аномально высокой подвижности электронов проводимости и др.

К криоэлектронным приборам следует отнести: запоминающие и логические криоэлектронные устройства вычислительной техники; генераторы, усилители, переключатели, резонаторы, детекторы, преобразователи частоты, фильтры, линии задержки, модуляторы и др. приборы СВЧ; сверхпроводящие магнитометры , гальванометры , болометры и др. Одной из задач К. является создание электронных охладителей, а также миниатюрных приборов, сочетающих в одной конструкции электронную схему, криостат , служащий герметической оболочкой, и охлаждающее устройство.

Криотроны. Развитие К. началось с создания криотрона (1955) - миниатюрного переключательного элемента, действие которого основано на явлении сверхпроводимости. Криотроны - элементы логических, запоминающих и переключательных устройств. Они отличаются низким потреблением энергии (10-18 дж ) , малыми габаритами (до 10-6 мм 2) , быстродействием (время переключения ~ 10-11 сек ) . Первые проволочные криотроны были вскоре заменены плёночными (1958-1960). В 1955-56 появились др. плёночные запоминающие элементы: персистор, персистотрон, ячейка Кроу, однако они не получили распространения. Основным криоэлектронным элементом в вычислительной технике остался плёночный криотрон. В 1967 был разработан плёночный туннельный криотрон (криосар), основан на Джозефсона эффекте .

Криоэлектронные усилители . Проблема приёма слабых сигналов СВЧ стимулировала появление низкотемпературных твердотельных усилителей, основанных на разных физических явлениях и обладающих ничтожно малыми шумами. К ним следует отнести прежде всего парамагнитный квантовый усилитель и параметрический усилитель, работающий при температуре 90K. В последнем роль активного элемента ( параметрического полупроводникового диода ) играет либо р-n -переход в полупроводнике с высокой подвижностью носителей при Т < 90К, либо переход металл - полуметалл (InSb , рис. 1 ). Последний приобретает при Т < 90К свойства полупроводника, имеющего подвижность носителей в 102 - 103 раз выше, чем у Ge и Si. Мощность, потребляемая таким усилителем, ~ 10-1- 10 - 2 вт.

Сверхпроводниковый усилитель также основан на принципе параметрического усиления, но в этом случае периодически изменяется не ёмкость С колебательной системы, а её индуктивность L ( рис. 2 ). Индуктивным элементом такого усилителя служит тонкая плёнка сверхпроводника при температуре несколько ниже Tkp. В сверхпроводящей плёнке возникает т. н. 'сверхиндуктивность' Lк обусловленная кинетической энергией движущихся сверхпроводящих электронных пар. Индуктивность Lk при определённом выборе геометрии плёнки может преобладать над обычной индуктивностью L проводника. Внешним электромагнитным полем можно периодически разрушать и восстанавливать сверхпроводящие электронные пары, изменяя их число ns, и этим самым можно периодически изменять индуктивность Lk по закону: L k 1/ n s.

Параэлектрические усилители основаны на аномально высокой поляризации некоторых диэлектриков (например, CrTiO3) при низких температурах. Диэлектрическая проницаемость таких диэлектриков (параэлектриков) от 10 до 15T103, при Т < 80К появляется сильная зависимость диэлектрических потерь от внешнего электрического поля ( рис. 3 ). Активный элемент параэлектрического усилителя представляет собой электрический конденсатор, заполненный таким параэлектриком, помещенным в электромагнитное поле (накачка). Ёмкость такого конденсатора периодически изменяется с частотой накачки, что позволяет осуществить параметрическое усиление ( рис. 4 ).

Существуют усилители, в которых используются комбинации перечисленных методов. Например, сочетание изменяющихся индуктивности L сверхпроводника и ёмкости С 'запертого' перехода металл - полуметалл позволяет создать усилитель, где одновременно от одного генератора модулируется С и L, что улучшает характеристики усилителей ( рис. 5 ).

Количественным критерием чувствительности криоэлектронных усилителей является их шумовая температура Тш . У криоэлектронных усилителей она достигает единиц и долей градуса К ( рис. 6 ). Наряду с этим криоэлектронные усилители обладают широкой полосой пропускания и высоким усилением (обычно от 10 до 104).

Криоэлектронные резонаторы. Повышение стабильности частоты генераторов СВЧ ограничено величиной добротности Q объёмных резонаторов , которая зависит от активных потерь энергии в их проводящих стенках. Теоретически предел Q обычных резонаторов 2-8T103 для основного типа волн в сантиметровом диапазоне. Добротность может быть увеличена в 10-100 раз охлаждением до 15-20K за счёт уменьшения рассеяния электронов на тепловых колебаниях кристаллической решётки металла.

Резонаторы со сверхпроводящими стенками теоретически должны обладать бесконечно большой добротностью из-за отсутствия потерь в поверхностном слое сверхпроводника. В действительности же потери существуют вследствие инерционности электронов. С другой стороны, на очень высоких частотах (~ 1011 гц ) , когда энергия кванта электромагнитного поля сравнима с энергией расщепления сверхпроводящих электронных пар (3,52 k T ) , потери в сверхпроводящем и нормальном состояниях становятся одинаковыми. Поэтому наибольшая добротность ( Q ~ 1011) достигается в дециметровом диапазоне длин волн. Для l 3 см добротность сверхпроводящих резонаторов ~ 107-1010. С помощью сверхпроводящих резонаторов стабильность частоты обычных клистронов может быть улучшена с 5×10-4 до 10-9-10-10, т. е. до уровня стабильности квантовых стандартов частоты при сохранении всех преимуществ клистронов. Сверхпроводящие резонаторы обычно работают при гелиевых температурах (4,2 К). Если в них используются сверхпроводники 1-го рода, то их рабочая температура поднимается до 10-15 К.

Фильтры и линии задержки. Сверхпроводящий фильтр представляет собой цепочку последовательных соединений сверхпроводящих резонаторов. Избирательность в полосе запирания у такого фильтра повышена в 103-106 раз по сравнению с обычными фильтрами.

Сверхпроводящая линия задержки в простейшем виде представляет собой тонкий кабель из сверхпроводника, свёрнутый в спираль и помещенный в криостат. Его длина соответствует времени задержки сигнала (t ~ мсек или долей мсек ) . Применяется в радиолокации и измерительной технике. Для t ~ нсек или псек используются сверхпроводящие меандры - извилистые линии из узких тонких сверхпроводящих плёнок на диэлектрической подложке. Изменяя внешним полем распределённую индуктивность такой линии, можно управлять временем задержки t. Применяются также параэлектрические фильтры и линии задержки.

Охлаждение в К. достигается различными методами. Криостат, который обычно служит оболочкой прибора, часто соединяют с криогенной установкой. Для охлаждения используются

также Джоуля - Томсона эффект , Пельтье эффект , Эттингсгаузена эффект, магнитное охлаждение и др. В приборах для космических исследований охлаждение и поддержание низких температур достигается за счёт использования отвердевших газов (1 кг твёрдого азота может находиться в космосе до 1 года).

Иногда несколько приборов помещают в общий криостат, который может выполнять также определённые функции, например служить антенной . Т. о. осуществляют интеграцию. Развитие К. особенно интегральной, приводит к увеличению надёжности приборов, уменьшению их габаритов, веса и расширяет области их применения ( рис. 7 ).

Лит.: Брэмер Д ж., Сверхпроводящие устройства, пер. с англ., М., 1964; Крайзмер Л. П., Устройства хранения дискретной информации, 2 изд., Л., 1969; Алфеев В. Н., Радиотехника низких температур, М., 1966; его же, Криогенная электроника, 'Известия ВУЗОВ. Радиоэлектроника', 1970, т. 13, в. 10, с. 1163-1175; Электронная техника. Серия 15, Криогенная электроника, в. 1, М., 1969, с. 3; Малков М., Данилов И., Криогеника, М., 1970; Уильямс Дж., Сверхпроводимость и ее применение в технике, перевод с английского, М., 1973.

В. Н. Алфеев.

Большая советская энциклопедия, БСЭ.