(от англ. skin - кожа, оболочка), поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. С.-э. обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают вихревые токи , в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.
Чем выше частота n электромагнитного поля и больше магнитная проницаемость m проводника, тем сильнее (в соответствии с Максвелла уравнениями ) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т. о., чем больше n, m и s , тем сильнее затухание, т. е. резче проявляется С.-э.
В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:
,
где
- коэффициент затухания, m0 - магнитная постоянная . На глубине х d 1/a амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (s 580 ксим/см; m 1) s 9,4 мм, в стали (a 100 ксим/см, (m 1000) d 0,74 мм. При увеличении частоты до 0,5 Мгц d уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с d, тем слабее проявляется С.-э.
Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше d и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:
где R0 - активное сопротивление проводника, определяющее мощность потерь в нём, X 0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, lc - периметр поперечного сечения скин-слоя, w 2pn; при этом R0 X 0. При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.
В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины d скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l > > d основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально ( R 0/ X 0).
В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и С.-э. снова становится нормальным. Т. о., на низких и очень высоких частотах С.-э. всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и d могут иметь место нормальный и аномальный С.-э. Всё сказанное справедливо, пока частота со меньше плазменной: w < w0 '(4p ne2 / m )1/2 ( n - концентрация свободных электронов, е - заряд, m - масса электрона) (относительно более высоких частот см. ст. Металлооптика ) .
С.-э. часто нежелателен. В проводах переменный ток при сильном С.-э. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном С.-э. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. 'Вредное' влияние С.-э. ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков .
С др. стороны, С.-э. находит применение в практике. На С.-э. основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На С.-э. основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка ).
Лит.: Нетушил А. В., Поливанов К. М., Основы электротехники, т. 3, М., 1956; Поливанов К. М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975; Нейман Л. Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949. См. также лит. при ст. Металлы .
И. Б. Негневицкий.