Значение ФЕРМИ ПОВЕРХНОСТЬ в Большой советской энциклопедии, БСЭ

Что такое ФЕРМИ ПОВЕРХНОСТЬ

поверхность, изоэнергетическая поверхность в пространстве квазиимпульсов р , отделяющая область запятых электронных состоянии металла от области, в которой при Т 0 К электронов нет. За большинство свойств металлов ответственны электроны, расположенные на Ф. п. и в узкой области пространства квазиимпульсов вблизи неё. Это связано с высокой концентрацией электронов проводимости в металле, плотно заполняющих уровни в зоне проводимости (см. Вырожденный газ , Твёрдое тело ) . Каждый металл характеризуется своей Ф. п., причём формы поверхностей разнообразны ( рис. ). Для 'газа свободных электронов' Ф. п. v сфера. Объём, ограниченный Ф. п. WF (приходящейся на 1 элементарную ячейку в пространстве квазиимпульсов), определяется концентрацией n электронов проводимости в металле: 2WF / (2p)3 n. Средние размеры Ф. п. для хороших металлов ~ / a , где v Планка постоянная , а v постоянная решётки, обычно n '1/ a 3. У большинства металлов, кроме большой Ф. п., обнаружены малые полости, объём которых значительно меньше, чем (2p)3 n /2. Эти полости определяют многие квантовые свойства металлов в магнитном поле (например, де Хааза v ван Альфена эффект ). У полуметаллов объём Ф. п. мал по сравнению с размерами элементарной ячейки в пространстве квазиимпульсов. Если занятые электронами состояния находятся внутри Ф. п., то она называется электронной, если же внутри Ф. п. электронные состояния свободны, то такая поверхность называется дырочной. Возможно одновременное существование обеих Ф. п. Например, у Bi Ф. п. состоит из 3 электронных и 1 дырочного эллипсоидов. В Ф. п. находит отражение симметрия кристаллов . В частности, они периодичны с периодом 2p b, где b v произвольный вектор обратной решётки. Все Ф. п. обладают центром симметрии. Встречаются Ф. п. сложной топологии (с самопересечениями), которые одновременно являются и электронными, и дырочными. Если Ф. п. непрерывно проходит через всё пространство квазиимпульсов, она называется открытой. Если Ф. п. распадается на полости, каждая из которых помещается в одной элементарной ячейке пространства квазиимпульсов, она называется замкнутой, например у Li, Au, Си, Ag v открытые Ф. п., у К, Na, Rb, Cs, In, Bi, Sb, Al v замкнутые. Иногда Ф. п. состоит из открытых и замкнутых полостей. Скорости электронов, расположенных на Ф. п.: uF' 108 см/сек, вектор (направлен по нормали к Ф. п.

Геометрические характеристики Ф. п. (форма, кривизна, площади сечений и т.п.) связаны с физескими свойствами металлов, что позволяет строить Ф. п. по экспериментальным данным. Например, магнетосопротивление металла зависит от того, открытая Ф. п. или замкнутая, а знак константы Холла (см. Холла эффект )от того, электронная она или дырочная. Период осцилляций магнитного момента (в эффекте де Хааза v ван Альфена) определяется экстремальной (по проекции квазиимпульса на магнитное поле) площадью сечения Ф. п. Поверхностный импеданс металла в условиях аномального скин-эффекта зависит от средней кривизны Ф. п. Период (по магнитному полю) осцилляций коэффициета поглощения ультразвука металлом обратно пропорционален экстремальному диаметру Ф. п. Частота циклотронного резонанса определяет эффективную массу электрона, знание которой позволяет найти скорость электронов на Ф. п. Для большинства одноатомных металлов и многих интерметаллических соединений Ф. п. уже изучены. Теоретическое построение Ф. п. основано на модельных представлениях о движении валентных электронов в силовом поле ионов.

Лит.: Каганов М. И., Филатов А. П., Поверхность Ферми, М., 1969.

М. И. Каганов.

Большая советская энциклопедия, БСЭ.