Значение СИММЕТРИЯ (В МАТЕМАТИКЕ) в Большой советской энциклопедии, БСЭ

СИММЕТРИЯ (В МАТЕМАТИКЕ)

(от греч. symmetria - соразмерность) в математике,

1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M' такую, что отрезок MM' перпендикулярен плоскости a (прямой а ) и делится ею пополам. Плоскость a (прямая а ) называется плоскостью (осью) С.

Отражение - пример ортогонального преобразования , изменяющего ориентацию (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой , называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. ( рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360|/ n , n - целое число ³ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники ( рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф ( рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360|/ n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка ( рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов ), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360|/2 k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2 k , является осью С. порядка k ( рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) ( рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток .

В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) ( рис. 6 , 7 ).

Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений ( рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория ), позволяет установить т. н. сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований . Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование Tg в линейном пространстве R решений этого уравнения. Соответствие g - Tg является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из 'соображений симметрии') и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

М. И. Войцеховский.

Большая советская энциклопедия, БСЭ.