Значение слова СВЕРХТЕКУЧЕСТЬ в Большой советской энциклопедии, БСЭ

Что такое СВЕРХТЕКУЧЕСТЬ

особое состояние квантовой жидкости , находясь в котором жидкость протекает через узкие щели и капилляры без трения; при этом протекающая часть жидкости обладает равной нулю энтропией . Единственным представителем семейства сверхтекучих жидкостей долгое время считался жидкий гелий 4He, становящийся сверхтекучим ниже температуры Тl2,17 К (при давлении насыщенных паров ps 37,8 мм рт. ст. ) . Сверхтекучий 4He назывался Не II (см. Гелий ) . С. Не II была открыта П. Л. Капицей в 1938. В 1972-74 было установлено, что С. обладает также жидкий 3He при температуре ниже Тс 2,6 ×10-3 К на кривой плавления. Переход нормальных жидких 4He и 3He в сверхтекучее состояние представляет собой фазовый переход II рода.

Сверхтекучую жидкость нельзя представлять как жидкость, не обладающую вязкостью, т. к. эксперименты с крутильными колебаниями диска, погруженного в Не II, показали, что затухание колебаний при температуре, не слишком далёкой от Т l ('лямбда-точки'), мало отличается от затухания аналогичных колебаний в Не I, который С. не обладает.

Теория сверхтекучести Не II. С. He ll была объяснена Л. Д. Ландау в 1941. Теория Ландау, получившая название двухжидкостной гидродинамики, основана на представлении о том, что при низких температурах свойства Не II как слабовозбуждённой квантовой системы обусловлены наличием в нём элементарных возбуждений, или квазичастиц . Согласно этой теории, Не II можно представить состоящим из двух взаимопроникающих компонент: нормальной и сверхтекучей.

Нормальная компонента при температурах, не слишком близких к Т l , представляет собой совокупность квазичастиц двух типов - фононов (квантов звука) и ротонов (квантов коротковолновых возбуждений, обладающих большей, чем у фононов, энергией). При T 0 плотность нормальной компоненты r n 0 , поскольку при этом любая квантовая система находится в основном состоянии и возбуждения (квазичастицы) в ней отсутствуют. При температурах от абсолютного нуля до 1,7-1,8 К совокупность элементарных возбуждений в 4He можно рассматривать как идеальный газ квазичастиц. С дальнейшим приближением к Tl из-за заметно усиливающегося взаимодействия квазичастиц модель идеального газа становится неприменимой. Взаимодействие квазичастиц между собой и со стенками сосуда обусловливает вязкость нормальной компоненты.

Остальная часть Не II - сверхтекучая компонента - вязкостью не обладает и поэтому свободно протекает через узкие щели и капилляры; её плотность r s r - r n, где r - плотность жидкости. При Т 0 , r s r , при увеличении температуры концентрация квазичастиц растет, поэтому r s уменьшается и, наконец, обращается в нуль при Т Тl (С. в l-точке исчезает, рис. 1 ). Согласно теории Ландау, жидкость перестаёт быть сверхтекучей и в случае, когда скорость её потока превышает критическое значение, при котором начинается спонтанное образование ротонов (см. Квантовая жидкость ) . При этом сверхтекучая компонента теряет импульс, равный импульсу испускаемых ротонов, и, следовательно, тормозится. Однако экспериментальное значение критической скорости существенно меньше той, которая требуется по теории Ландау для разрушения С.

С микроскопической точки зрения появление С. в жидкости, состоящей из атомов с целым спином ( бозонов ) , например атомов 4He, связано с переходом при Т < Т lзначительного числа атомов в состояние с нулевым импульсом. Это явление называется Бозе - Эйнштейна конденсацией , а совокупность перешедших в новое состояние атомов - Бозе-конденсатом. Существование в Не II атомов, обладающих различным характером движения, - атомов конденсата и атомов, не вошедших в конденсат, - приводит к двухжидкостной гидродинамике Ландау (Н. Н. Боголюбов ; 1947, 1963). Состояние всех частиц Бозе-конденсата описывается одной и той же квантовомеханической волновой функцией (конденсатной функцией) y , где no - плотность конденсата, j - фаза волновой функции. В случае, если атомы слабо взаимодействуют между собой, no совпадает с r s. В Не II из-за сильного взаимодействия атомов no составляет при Т 0 лишь несколько процентов r s. Скорость движения сверхтекучей компоненты u s связана с j соотношением , где - градиент функции j, m - масса атома 4He, и h - Планка постоянная . Это означает, что сверхтекучая компонента движется потенциально (см. Потенциальное течение ) и, следовательно, не испытывает сопротивления со стороны обтекаемых ею предметов и стенок канала или сосуда.

Потенциальность течения сверхтекучей компоненты может нарушаться на осях т. н. квантованных вихрей, которые отличаются от вихрей в обычных жидкостях (см. Вихревое движение ) тем, что циркуляция скорости вокруг оси вихря квантуется (Л. Онсагер , 1948; Р. Фейнман , 1955). Квант циркуляции скорости равен h/m. Квантованные вихри осуществляют взаимодействие между сверхтекучей и нормальной компонентами сверхтекучей жидкости. Это взаимодействие приводит хотя и к слабому, но конечному затуханию потока сверхтекучей жидкости в замкнутом канале. При некоторой скорости движения сверхтекучей компоненты относительно нормальной компоненты или стенок сосуда квантованные вихри начинают образовываться настолько интенсивно, что свойство С. исчезает. В рамках этой теории С. пропадает при скоростях, существенно меньших предсказываемых теорией Ландау и более близких к реальным значениям критической скорости. Квантованные вихри наблюдаются экспериментально при вращении сосуда с Не II. Кроме того, в экспериментах с ионами, инжектируемыми в Не II, обнаружены квантованные вихри, имеющие форму кольца.

Сверхтекучесть 3He. При определённых условиях С. может осуществляться и в системах, состоящих из атомов с полуцелым спином - фермионов (в т. н. ферми-жидкостях). Это происходит в том случае, когда между фермионами имеются силы притяжения, которые приводят к образованию связанных состояний пар фермионов, т. н. куперовских пар (см. Купера эффект ) . Куперовские пары обладают целым спином, поэтому могут образовывать Бозе-конденсат. С. такого рода осуществляется для электронов в некоторых металлах и носит название сверхпроводимости . Аналогичная ситуация имеет место в жидком 3He, атомы которого имеют спин 1/2 и образуют типичную квантовую ферми-жидкость. Свойства ферми-жидкости можно описать как свойства газа квазичастиц-фермионов с эффективной массой примерно в 3 раза большей, чем масса атома 3He. Силы притяжения между квазичастицами в 3He очень малы, лишь при температурах порядка нескольких мК в 3He создаются условия для образования куперовских пар квазичастиц и возникновения С. Открытию С. у 3He способствовало освоение эффективных методов получения низких температур - Померанчука эффекта и магнитного охлаждения . С их помощью удалось выяснить характерные особенности диаграммы состояния 3He при сверхнизких температурах ( рис. 2 ). В отличие от 4He (см. рис. 1 к ст. Гелий ) , на диаграмме состояния 3He обнаружены две сверхтекучие фазы (А и Б). Переход нормальной ферми-жидкости в фазу А представляет собой фазовый переход II рода ( теплота фазового перехода равна нулю). В фазе A образовавшиеся куперовские пары обладают спином 1 и отличным от нуля моментом импульса. В ней могут возникать области с общими для всех пар направлениями спинов и моментов импульса. Поэтому фаза А является анизотропной жидкостью. В магнитном поле фаза А расщепляется на две фазы ( A1 и A2 ) , каждая из которых также является анизотропной. Переход из сверхтекучей фазы А в сверхтекучую фазу В является фазовым переходом 1 рода с теплотой перехода ~1,5 ×10-6 дж/моль (15 эрг/моль ) . Магнитная восприимчивость 3He при переходе А - В скачком уменьшается и продолжает затем уменьшаться с понижением температуры. Фаза В является, по-видимому, изотропной.

Эффекты, сопутствующие сверхтекучести. В сверхтекучей жидкости, кроме обычного (первого) звука (колебаний плотности), может распространяться т. н. второй звук , представляющий собой звук в газе квазичастиц (колебания плотности квазичастиц, а следовательно, и температуры). Сверхтекучая жидкость обладает аномально высокой теплопроводностью, причиной которой является конвекция , - теплота переносится макроскопическим движением газа квазичастиц. При нагревании Не II в одном из сообщающихся (через капилляр) сосудов между сосудами возникает разность давлений (термомеханический эффект). Этот эффект объясняется тем, что в сосуде с большей температурой оказывается повышенной концентрация квазичастиц. Из-за того, что узкий капилляр не пропускает вязкого потока нормальной компоненты, возникает избыточное давление газа квазичастиц, подобное осмотическому давлению в растворе. Существует и обратный - механокалорический - эффект: при быстром вытекании Не II через капилляр из сосуда температура внутри сосуда повышается (в нём увеличивается концентрация квазичастиц), а вытекающий гелий охлаждается. Интересными свойствами обладает сверхтекучая плёнка гелия, образующаяся на твёрдой стенке сосуда. Так, например, она может выравнивать уровни Не II в сосудах, имеющих общую стенку.

Лит.: Капица П. Л., Эксперимент, теория, практика, М., 1974; Халатников И. М., Фомин И. А., Сверхтекучесть и фазовые переходы в жидком гелии-З, 'Природа', 1974, | 6; Халатников И. М., Теория сверхтекучести, М., 1971; Квантовые жидкости. Теория. Эксперимент, М., 1969; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; William Е., Kelier, Helium-3 and Helium-4, N.-Y., 1969.

Т. Е. Воловик.

Большая советская энциклопедия, БСЭ.