Значение ПОИСКОВАЯ СИСТЕМА в Большой советской энциклопедии, БСЭ

ПОИСКОВАЯ СИСТЕМА

система управления, система автоматического управления , в которой управляющие воздействия методом поиска автоматически изменяются т. о., чтобы осуществлялось наилучшее (в каком-то смысле) управление объектом; при этом характеристики объекта или внешние возмущения могут изменяться неизвестным заранее образом. Принцип автоматического поиска лежит в основе действия самоприспосабливающихся систем . П. с. существенно отличаются от следящих систем и систем стабилизации без поиска (в т. ч. систем программного регулирования), в которых устраняется до допустимых пределов рассогласование между заданными значениями регулируемых параметров и их текущими или средними значениями путём воздействия на управляющие переменные x ( t ) , зависящего от этого рассогласования; при этом требуется, чтобы отношение выходных параметров y ( t )объекта управления к его входным параметрам x ( t ) не меняло знак:

const.(1)

Однако для множества различных объектов, технологических и др. процессов типично то, что их статические и динамические характеристики могут изменяться произвольно. Таковы, например, полёт самолёта, процессы горения, многие химические реакции и др. При этом часто, наряду с нарушением условия (1), между целевыми функциями (характеризующими цель управления) и входным воздействием имеется статическая взаимосвязь экстремального вида. В таких системах количество начальной информации об объекте недостаточно для достижения цели управления. Естественный путь восполнения недостающей информации - определение её в процессе работы.

Структурная схема П. с. показана на рис . Состояние объекта управления определяется управляющими воздействиями [ x1 ( t ) ,..., xm ( t )], внешними возмущениями [ f1 ( t ) ,..., fk ( t )] и выходными параметрами [ y1 ( t ), -, yn ( t )] . В П. с. входят: устройство формирования цели управления (УЦ), устройство организации поиска (УП) и органы управления (ОУ). УЦ состоит из измерительного и вычислительного устройств и по показателям состояния объекта вырабатывает показатель цели управления [ x ( t )]. Функционал [ x ( t )] может изменяться и перенастраиваться в зависимости от переменных [u1( t ), -, ui ( t )]. УП включает устройства логического действия и зависимости от изменения [ x ( t )]; оно вырабатывает командные сигналы , необходимые для приближения системы к заданному значению показателя цели управления.

Поиск осуществляется следующим образом: на вход объекта подаются пробные воздействия и оценивается реакция на них объекта, проявляющаяся в виде изменения значения целевой функции ( t ) ; далее в УП определяются те воздействия, которые изменят показатель цели в нужную сторону; вслед за этим вырабатываются и подаются на вход объекта соответствующие сигналы, т. е. прикладываются рабочие воздействия. Затем на объект управления снова подаются поисковые воздействия и цикл повторяется.

Наиболее распространённые методы поиска: метод Гаусса - Зейделя, при котором последовательно отыскивается экстремум выхода по 1-й, 2-й,..., m -йкоординате входного воздействия; метод градиента, состоящий в том, что новое входное воздействие получается из предыдущего в результате движения системы по градиенту выходного функционала; метод случайного поиска, при котором используются пробные смещения в случайных направлениях; метод стохастической аппроксимации, состоящий в последовательном приближении к экстремуму с учётом результатов предыдущих поисковых шагов, с постепенным уменьшением размера шага.

В первых П. с. требовалось отыскивать и поддерживать управляющие воздействия, обеспечивающие наибольшие или наименьшие (экстремальные) значения целевой функции (например, наибольшую дальность полёта самолёта, наибольший кпд устройства, наибольшую температуру в топке, наименьшую стоимость продукции и т.д.). Такие П. с. называются системами экстремального регулирования (СЭР) или экстремальными системами. Идея экстремального регулирования как нового направления в развитии систем автоматического управления впервые была выдвинута в СССР (В. В. Казакевич, 1944). Главное преимущество экстремальных систем состоит в том, что они не требуют значительной начальной информации об управляемом объекте, а также высокой точности измерительной аппаратуры, дающей текущую информацию об объекте, - эта аппаратура должна лишь иметь чувствительность, достаточную для характеристики тенденции (направления) изменения контролируемых параметров.

Часто П. с. используется совместно с моделью объекта (см. Моделирование ) . В этом случае оптимальное значения параметров объекта выбираются методом поиска не на самом объекте, а на его модели. Затем значения этих параметров устанавливаются на объекте. Подобные системы применяют, например, для автоматического управления самолётом (автопилот).

П. с. применяют также для стабилизации регулируемого параметра. Это необходимо в том случае, когда нарушается условие (1). При этом целевая функция может иметь вид

или ,

( - заданное значение выходного параметра), причём П. с. должна отыскивать минимум ( t ) .

Лит.: Казакевич В. В., Об экстремальном регулировании, в сборнике: Автоматическое управление и вычислительная техника, в. 6, М., 1964; Фельдбаум А. А., Вычислительные устройства в автоматических системах, М,, 1959; Красовский А. А., Динамика непрерывных самонастраивающнхся систем, М., 1963; Первозванский А. А., Поиск, М., 1970; Растригин Л. А., Системы экстремального управления, М., 1974.

В. В. Казакевич.

Большая советская энциклопедия, БСЭ.