химические, волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья В. х. подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к В. х. относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). В. х. выпускают в промышленности в виде: 1) моноволокна (одиночное волокно большой длины); 2) штапельного волокна (короткие отрезки тонких волокон); 3) филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединённых посредством крутки), филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).
Историческая справка. Возможность получения В. х. из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 вв., но только в 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химического волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918-20 разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 организовано производство белковых волокон из молочного казеина. Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпущено наиболее известное синтетическое волокно - полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60.
Свойства. Волокна химические часто обладают высокой разрывной прочностью [до 1200 Мн/м 2 (120 кгс/мм 2)], значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемо- и термостойкостью. Физико-механические и физико-химические свойства В. х. можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера В. х., обладающие разнообразными текстильными и другими свойствами (табл.). В. х. можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.
Производство. Для производства В. х. из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях. Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна.
Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термо- или светостабилизации волокон, их матировки и т.п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон.
Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании В. х. из расплава полимера (например, полиамидных волокон ) средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон ), такой средой является горячий воздух, в котором растворитель испаряется (так называемый 'сухой' способ формования). При формовании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна ) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну ('мокрый' способ формования). Скорость формования зависит от толщины и назначения волокон, а также от метода формования. При формовании из расплава скорость достигает 600-1200 м/мин , из раствора по 'сухому' способу - 300-600 м/мин , по 'мокрому' способу - 30-130 м/мин . Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности В. х. и улучшению их текстильных свойств.
Отделка В. х. заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условий формования и вида волокна. При этом из волокон удаляются низкомолекулярные соединения (например, из полиамидных волокон), растворители (например, из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например, вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые В. х. подвергают дополнительной тепловой обработке - термофиксации (обычно в натянутом состоянии при 100-180|С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них во время сухих и мокрых обработок при повышенных температурах.
Мировое производство В. х. развивается быстрыми темпами. Это объясняется, в первую очередь, экономическими причинами (меньшие затраты труда и капитальных вложений) и высоким качеством В. х. по сравнению с природными волокнами. В 1968 мировое производство В. х. достигало 36% (7,287 млн. т ) от объёма производства всех видов волокон.
В. х. в различных отраслях в значительной степени вытесняют натуральный шёлк, лён и даже шерсть. Предполагается, что к 1980 производство В. х. достигнет 9 млн. т , а в 2000 - 20 млн. т в год и сравняется с объёмом производства природных волокон. В СССР в 1966 было выпущено около 467 тыс. т , а в 1970 623 тыс. т .
Основные свойства волокон химических
Вид волокна
Плотность,
г/см 3
Прочность
Удлинение, %
Набухание
в воде, % Влагопогло-
щение при
20|С и 65%
относит. влажности, %
сухого во-
локна,
кгс/мм 2
мокрого
волокна
волокна
в петле
сухого
волокна
мокрого волокна
% от прочности сухого
Искусственные волокна
Ацетатное (текст. нить)
1,32
16-18
65
85
25-35
35-45
20-25
6,5
Триацетатное штапельное волокно
1,30
14-23
70
85
22-28
30-40
12-18
4,0
Вискозные волокна:
штапельное обычное
1,52
32-37
55
35
15-23
19-28
95-120
13,0
штапельное высокопрочное
1,52
50-60
75
40
19-28
25-29
62-65
12,0
штапельное высокомодульное
1,52
50-82
65
25
5-15
7-20
55-90
12,0
текст. нить обычная
1,52
32-37
55
45
15-23
19-28
95-120
13,0
то же, высокопрочная
1,52
45-82
80
35
12-16
20-27
65-70
13,0
Медноаммиачные волокна:
штапельное волокно
1,52
21-26
65
70
30-40
35-50
100
12,5
текст. нить
1,52
23-32
65
75
10-17
15-30
100
12,5
Синтетические волокна
Полиамидное (капрон):
текстильная нить обычная
1,14
46-64
85-90
85
30-45
32-47
10-12
4,5
то же, высокопрочная
1,14
74-86
85-90
80
15-20
16-21
9-10
4,5
штапельное волокно
1,14
41-62
80-90
75
45-75
10-12
4,5
Полиэфирное (лавсан):
текст. нить обычная
1,38
52-62
100
90
18-30
18-30
3-5
0,35
то же, высокопрочная
1,38
80-100
100
80
8-15
8-15
3-5
0,35
штапельное волокно
1,38
40-58
100
40-80
20-30
20-30
3-5
0,35
Полиакрилонитрильное (нитрон):
технич. нить
1,17
46-56
95
72
16-17
16-17
2
0,9
штапельное волокно
1,17
21-32
90
70
20-60
20-60
5-6
1,0
Поливинилспиртовое штапельное волокно
1,30
47-70
80
35
20-25
20-25
25
3,4
Поливинилхлоридное штапельное волокно
1,38
11-16
100
60-90
23-180
23-180
0
0
Полипропиленовое волокно:
текстильная нить
0,90
30-65
100
80
15-30
15-30
0
0
штапельное волокно
0,90
30-49
100
90
20-40
20-40
0
0
Полиуретановая нить (спандекс)
1,0
5-10
100
100
500-1000
500-1000
-
1,0
Лит.: Характеристика химических волокон. Справочник, М., 1966; Роговин З. А., Основы химии и технологии производства химических волокон, 3 изд., т. 1-2, М. - Л., 1964; Технология производства химических волокон, М., 1965.
В. В. Юркевич.