Значение АЭРОДИНАМИЧЕСКИЕ ИЗМЕРЕНИЯ в Большой советской энциклопедии, БСЭ

АЭРОДИНАМИЧЕСКИЕ ИЗМЕРЕНИЯ

измерения, измерения скорости, давления, плотности и температуры движущегося воздуха, а также сил, возникающих на поверхности твёрдого тела, относительно которого происходит движение, и потоков тепла, поступающих к этой поверхности. Большинство практических задач, которые ставят перед аэрогазодинамикой авиация, ракетная техника, турбостроение, промышленное производство и т. д., требует для своего решения проведения экспериментальных исследований. В этих исследованиях на экспериментальных установках - аэродинамических трубах и стендах - моделируется рассматриваемое течение (например, движение самолёта с заданными величинами высоты и скорости) и определяются силовые и тепловые нагрузки на исследуемую модель. Соблюдение условий, диктуемых теорией моделирования , позволяет перейти от результатов эксперимента на модели к натуре. Результаты измерений обычно получают в форме зависимостей безразмерных аэродинамических коэффициентов от основных критериев подобия - М-числа , Рейнольдса числа , Прандтля числа и т. д. и в таком виде ими пользуются для определения подъёмной силы и сопротивления самолёта, нагревания поверхности ракеты и космического корабля и т. п.

Измерение сил и моментов, действующих на обтекаемое тело. При решении многих задач возникает необходимость измерений суммарных сил, действующих на модель. В аеродинамических трубах для определения величины, направления и точки приложения аэродинамических силы и момента обычно применяют аэродинамические весы. Аэродинамическую силу, действующую на свободно летящую модель, можно определить, измеряя ускорение модели. Ускорения летящих моделей или натурных объектов в лётных испытаниях измеряют акселерометрами . Если размер модели не позволяет установить на ней необходимые приборы, то ускорение находят по изменению скорости v модели вдоль траектории.

Полную аэродинамическую силу (момент), действующую на тело, можно представить как сумму равнодействующих нормальных и касательных сил на его поверхности. Чтобы получить значение нормальных сил, измеряют давления на поверхности модели при помощи специальных, т. н. дренажных, отверстий, соединённых с манометрами резиновыми или металлическими трубками ( рис. 1 ). Тип манометра выбирается в соответствии с величиной измеряемого давления и заданной точностью измерений.

Если скорость потока, обтекающего модель, так велика, что сказывается сжимаемость газа, то можно оптическими методами найти распределение плотности газа вблизи поверхности модели (см. ниже), а затем рассчитать поле давлений и получить распределение давлений по поверхности модели. Силы, касательные к поверхности модели, обычно определяют расчётом; в некоторых случаях для их измерения применяют специальные весы.

Измерение скорости газа, обтекающего модель. Скорость газа в аэродинамических трубах и при обтекании самолётов, ракет и летающих моделей в большинстве случаев измеряется трубками (насадками) Прандтля (см. Трубки гидрометрические ) . Манометры, подключенные к насадку Прандтля, измеряют полное p 0 и статическое р давления текущего газа. Скорость несжимаемого газа определяют из уравнения Бернулли:

(где r - плотность жидкости).

Если измеряемая скорость больше скорости звука, перед насадком возникает ударная волна и показание манометра, соединённого с трубкой полного давления, будет соответствовать величине полного давления за ударной волной p 0- < p 0 . В этом случае определяют уже не v, а число М по специальной формуле. При измерении сверхзвуковых скоростей обычно пользуются раздельными насадками для измерения статического давления р и полного давления p 0- за прямым скачоком уплотнения .

Существуют также методы, позволяющие измерять скорость газа по изменению количества тепла, отводимого от нагретой проволочки термоанемометра , по соотношению плотностей или температур в заторможенном и текущем газе; по скорости перемещения отмеченных частиц.

Для измерения относительно малых скоростей в промышленной аэродинамике и метеорологии применяют анемометры , среднюю величину скорости газа, текущего в трубе, можно получить, измеряя его расход специальными расходомерами . Скорость летящего тела можно также вычислить, измеряя время прохождения телом заданного участка траектории, по Доплера эффекту и другими способами.

Измерение плотности газа. Основные методы исследования поля плотностей газа можно разделить на 3 группы: основанные на зависимости коэффициента преломления света от плотности газа; на поглощении лучистой энергии газом и основанные на послесвечении молекул газа при электрическом разряде. Последние 2 группы методов применимы для исследования плотности газа при низких давлениях. Из методов 1-й группы применяются метод Тёплера ('шлирен'-метод) и интерферометрический. В них для измерения плотности пользуются зависимостью между плотностью r газа и коэффициент преломления n света:

При обтекании тела сжимаемой средой в областях, где имеются возмущения газа, вызванные обтекаемым телом, возникают поля с неоднородным распределением плотности (поля градиентов плотности). Отдельные участки поля с разной плотностью по-разному отклоняют проходящий через них луч света. Часть отклоненных лучей не пройдёт через фокус приёмника прибора Тёплера, т. к. его срезает непрозрачная пластина, т. н. нож Фуко 7 ( рис. 2 ); в результате получается местное изменение освещённости экрана (фотопластинки). Полученные фотографии ( рис. 3 , а) позволяют качественно анализировать характер обтекания модели; на них хорошо видны области значительных изменений плотности: ударных волн, зон разрежения и т. п. Ударные волны, которые видны на фотографии в виде тонких линий 2, в действительности представляют собой конические поверхности, на которых происходит скачкообразное изменение давления, плотности и температуры воздуха. При обтекании кольцевой поверхности торца цилиндра происходит отрыв пограничного слоя 3 от поверхности конуса.

Количественные данные о плотности газа и величине изменения (градиенте) плотности можно получить, сравнивая при помощи микрофотометра изменение освещённости экрана, вызванное градиентом плотности в исследуемом течении, с изменением освещённости, вызванной эталонной стеклянной линзой 2 ( рис. 3 , б) , расположенной вне потока аэродинамической трубы: точкам в поле потока и на линзе, имеющим одинаковую освещённость, соответствует равенство коэффициента преломления. По найденным таким образом значениям коэффициент преломления в поле течения вычисляют плотность газа и величину градиента плотности для всего исследуемого поля. Кроме фотометрического метода, для количественного анализа поля плотностей пользуются и другими методами.

Метод исследования течений газа при помощи интерферометра также основан на зависимости между плотностью газа и коэффициентом преломления. Для этого обычно пользуются интерферометром Маха-Цендера. На полученной фотографии ( рис. 4 ) области равной освещённости соответствуют областям постоянной плотности. Расшифровка фотографий позволяет рассчитать плотность в исследуемой области течения.

Одно из важных преимуществ оптических методов - возможность исследования газовых течений без помощи зондов и насадков различных типов, являющихся источниками возмущений в потоке.

Измерение температуры газовых потоков. В потоке, движущемся с большой скоростью, обычно рассматривают 2 температуры: невозмущённого потока Т и заторможенного потока T0 T + v2/ 2 cp, где cр - удельная теплостойкость газа при постоянном давлении в дж/ ( кгTК ) , v в м /сек, Т и T 0 в К . Очевидно, что T0 -T при v - 0 . В вязком газе, обтекающем твёрдую поверхность, скорость на стенке равна нулю и любой неподвижный насадок, установленный в воздушном потоке, измерительную температуру, близкую к температуре торможения T0. В показание прибора войдёт ряд поправок, связанных с наличием утечек тепла и т. п.

При помощи насадков ( рис. 5 ), в которых измерительным элементом обычно служит термопара или термометр сопротивления , удаётся измерить температуру T 0 £ 1500 К . Для измерения более высоких температур заторможенного или текущего газа пользуются оптическими яркостными и спектральными методами.

Статическую температуру Т можно найти по связи температуры и скорости звука, т. к.

Для измерения скорости звука в стенке аэродинамической трубы монтируется источник звуковых колебаний известной частоты. На теневой фотографии поля течения будут видны звуковые волны. Скорость звука определяется как a fe, где е - расстояние между волнами, а f - частота колебаний источника ( рис. 6 ).

Методы измерения касательных сил (трения) и тепловых потоков на поверхности модели. Для определения касательных напряжений t и теплового потока q можно произвести измерение полей скорости и температуры газа вблизи поверхности и найти искомые величины, пользуясь уравнением Ньютона для напряжений трения

и уравнением теплопроводности

где m и l коэффициент динамической вязкости и коэффициент теплопроводности газа,

градиенты скорости и температуры у поверхности тела в направлении у, нормальном к поверхности. Практически невозможно с достаточной точностью получить значения

при y - 0.Поэтому для определения силы трения и потоков тепла на основании измерения полей скорости и температуры в пограничном слое применяют т. н. интегральные методы, в которых сила трения и тепловой поток на рассматриваемом участке поверхности определяются по изменениям толщины пограничного слоя и профилей скорости и температуры.

Более точные значения t: и q можно получить непосредственным измерением. Для этого на специальных весах измеряют касательную силу D Х на элементе поверхности D S ; касательные напряжения определяются как

Аналогично, пользуясь калориметрами различных типов, можно измерить тепловой поток q, поступающий к рассматриваемому элементу поверхности D S , и получить удельный тепловой поток

Для получения распределения тепловых потоков вдоль поверхности тела обычно определяют скорость повышения температуры dT/dt, измеряемой термопарами, установленными в специальных калориметрах, вмонтированных в поверхность модели, или термопарами, непосредственно впаянными в тонкую поверхность модели с относительно малой теплопроводностью.

Увеличение высоты и скорости полёта, а также необходимость моделирования процессов, возникающих за сильными ударными волнами и вблизи поверхности тела, привело к широкому использованию в аэродинамическом эксперименте и других физических методов измерения, например спектральных методов, применяемых в ударных трубах, радиоизотопных для измерения скорости разрушения теплозащитных материалов, методов измерения электропроводности газа, нагреваемого ударной волной, и др.

Лит.: Попов С. Г., Измерение воздушных потоков, М.-Л., 1947; его же, Некоторые задачи и методы экспериментальной аэромеханики, М., 1952: Пэнк-хёрст Р., Холдер Д., Техника эксперимента в аэродинамических трубах, пер. с англ., М., 1955; Ладенбург Р., Винклер Д., Ван-Вурис К., Изучение сверхзвуковых явлений при помощи интерферометра, 'Вопросы ракетной техники', 1951, в. 1-2; Техника гиперзвуковых исследований, пер. с англ., М., 1964; Аэрофизические исследования сверхзвуковых течений, М.-Л., 1966; Современная техника аэродинамических исследований при гиперзвуковых скоростях, под ред. А. Крилла, пер. с англ., М., 1965.

М. Я. Юделович.

Большая советская энциклопедия, БСЭ.