Значение слова АММИАК в Большой советской энциклопедии, БСЭ

Что такое АММИАК

NH3, простейшее химическое соединение азота с водородом. Один из важнейших продуктов химической промышленности; синтез А. из азота воздуха и водорода - основной метод получения т. н. связанного азота . В природе А. образуется при разложении азотсодержащих органических веществ. Название 'А.' - сокращенное от греч. hals ammoniakos или лат. sal ammoniacus; так назывался нашатырь ( аммония хлорид ), который получали в оазисе Аммониум (ныне Сива) в Ливийской пустыне.

Физические и химические свойства. А. - бесцветный газ с резким удушливым запахом и едким вкусом. Плотность газообразного А. при 0|С и 101,3 кн/м2 (760 мм рт. ст. ) 0,7714 кг/м3 , tкип -33,35|С, tпл -77,70|С, tкpит 132,4|С, давление критическое 11,28 Мн/м2 (115,0 кгс/см2 ), плотность критическая 235 кг/м3 , теплота испарения 23,37 кдж/моль (5,581 ккал/моль ). Сухая смесь А. с воздухом способна взрываться; границы взрывчатости при комнатной температуре лежат в пределах 15,5-28% А., с повышением температуры границы расширяются. А. хорошо растворим в воде (при 0|С объём воды поглощает около 1200 объёмов А., при 20 |С - около 700 объёмов А.). При 20|С и 0,87 Мн/м2 (8,9 кгс/см2 ) А. легко переходит в бесцветную жидкость с плотностью 681,4 кг/м3 , сильно преломляющую свет. Подобно воде, жидкий А. сильно ассоциирован, главным образом за счёт образования водородных связей . Жидкий А. практически не проводит электрический ток. Жидкий А. - хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый А. - бесцветные кубические кристаллы.

Молекула А. имеет форму правильной тригонометрической пирамиды с атомом N в вершине; углы между связями H-N-H 108|, межатомные расстояния H-N-H 1,015, H-H 1,64.

Интересным свойством молекул А. является их способность к структурной инверсии, т. е. к 'выворачиванию наизнанку' путём прохождения атома азота сквозь образованную атомами водорода плоскость основания пирамиды. Инверсия связана с излучением строго определённой частоты, на основе чего была создана аппаратура для очень точного определения времени (молекулярные генераторы). Такие 'молекулярные часы' позволили, в частности, установить, что продолжительность земных суток ежегодно возрастает на 0,43 мсек . Дипольный момент молекулы А. равен 1,43 D . Благодаря отсутствию неспаренных электронов А. диамагнитен.

А. - весьма реакционноспособное соединение. За счёт наличия неподелённой электронной пары у атома N особенно характерны и легко осуществимы для А. реакции присоединения. Наиболее важна реакция присоединения протона к молекуле А., ведущая к образованию иона аммония NH+4, который в соединениях с анионами кислот ведёт себя подобно ионам щелочных металлов. Такие реакции происходят при растворении А. в воде с образованием слабого основания - аммония гидроокиси NH4OH, а также при непосредственном взаимодействии А. с кислотами. Распространённый тип реакций присоединения - образование аммиакатов при действии газообразного или жидкого А. на соли. Для А. характерны также реакции замещения. Щелочные и щёлочноземельные металлы реагируют с жидким и газообразным А., образуя в зависимости от условий нитриды (Na3N) или амиды (NaNH2). А. реагирует также с серой, галогенами, углем, CO2 и др. К окислителям в обычных условиях А. довольно устойчив, однако, будучи подожжён, он горит в атмосфере кислорода, образуя воду и свободный азот. Каталитическим окислением А. получают окись азота, превращаемую затем в азотную кислоту .

Получение и применение. В лабораторных условиях А. может быть получен вытеснением его сильными щелочами из аммониевых солей по схеме: 2NH4CI + Ca(OH)2 2NH3 + CaCl2 + 2H2O. Старейший промышленный способ получения А. - выделение его из отходящих газов при коксовании угля. Основной современный способ промышленного получения А. - синтез из элементов - азота и водорода, предложенный в 1908 немецким химиком Ф. Габером.

Наиболее распространённым и экономичным методом получения технологического газа для синтеза А. является конверсия углеводородных газов. Исходным сырьём в этом процессе служит природный газ, а также попутные нефтяные газы, газы нефтепереработки, остаточные газы производства ацетилена. Сущность конверсионного метода получения азото-водородной смеси состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей - водяного пара и кислорода. К конвертированному газу при этом добавляют атмосферный воздух или воздух, обогащенный кислородом. Синтез А. из простых веществ

протекает с выделением тепла и уменьшением объёма. Наиболее благоприятными, с точки зрения равновесия, условиями образования А. являются возможно более низкая температура и возможно более высокое давление. Без катализаторов реакция синтеза А. вообще не происходит. В промышленности для синтеза А. используют исключительно железные катализаторы, получаемые восстановлением сплавленных окислов железа Fe3O4 с активаторами (Al2O3, K2O, CaO, SiO2, а иногда и MgO). Важный этап процесса синтеза - очистка газовой смеси от каталитических ядов (к ним относятся вещества, содержащие S, O2, Se, P, As, пары воды, CO и др.).

Способы производства синтетического А. различаются по применяемому давлению: системы низкого (10-15 Мн/м2 ), среднего (25-30 Мн/м2 ) и высокого (50-100 Мк/л2 ) давления. Наиболее распространены системы среднего давления (30 Мн/м2 и 500|С) (1 Мн/м2 ( 10 кгс/см2 ). Для увеличения степени использования газа в современных системах синтеза А. применяют многократную циркуляцию азото-водородной смеси - круговой аммиачный цикл (см. рис . ).

Свежий газ (азото-водородная смесь) и непрореагировавшие, т. н. циркуляционные газы поступают сначала в фильтр 1 , где они очищаются от посторонних примесей, затем в межтрубное пространство конденсационной колонны 2 , отдавая своё тепло газу, движущемуся по трубкам колонны. Далее газы проходят через испаритель 3 , в котором происходят их дальнейшее охлаждение и конденсация А., увлечённого циркуляционными газами. Охлажденная смесь газов и сконденсировавшийся А. из испарителя направляются в разделительную часть (сепаратор) конденсационной колонны, где жидкий А. отделяется и как готовый продукт выводится по трубе в резервуар 9 . Газообразный А., выходящий из испарителя, проходя брызгоуловитель 4 , освобождается от капель жидкого А. и направляется в цех переработки или в холодильную установку на сжижение. Газы, освобожденные от А., из сепаратора поступают в колонну синтеза 5 . Колонна синтеза внутри имеет катализаторную коробку с трубчатой или полочной насадкой и теплообменник. Газы, проходя через колонну синтеза, реагируют между собой; выходящая из колонны газовая смесь содержит 15 - 20% А. Далее эти газы поступают в конденсатор 6 , где и происходит сжижение А. Жидкий А. отделяется в сепараторе 7 и поступает в резервуар 9 , а непрореагировавшие газы подаются циркуляционным насосом 8 в фильтр 1 для смешения со свежей азото-водородной смесью.

А. используется для получения азотной кислоты, азотсодержащих солей, мочевины , синильной кислоты , соды по аммиачному методу. Так как жидкий А. имеет большую теплоту испарения, то. он служит рабочим веществом холодильных машин. Жидкий А. и его водные растворы применяют как жидкие удобрения . Большие количества А. идут на аммонизацию суперфосфата и туковых смесей.

А. ядовит. Он сильно раздражает слизистые оболочки. Острое отравление А. вызывает поражения глаз и дыхательных путей, одышку, воспаление лёгких. Предельно допустимой концентрацией А. в воздухе производственных помещений считается 0,02 г/м3 . А. хранят в стальных баллонах, окрашенных в жёлтый цвет, с чёрной надписью - А.

Лит.: Технология связанного азота, М., 1966.

В. К. Бельский.

Большая советская энциклопедия, БСЭ.