Значение ЧЕБЫШЕВ ПАФНУТИЙ ЛЬВОВИЧ, МАТЕМАТИК в Энциклопедическом словаре Брокгауза и Евфрона

Что такое ЧЕБЫШЕВ ПАФНУТИЙ ЛЬВОВИЧ, МАТЕМАТИК

знаменитый русский математик, родился 14 мая 1821 г. в сельце Окатове, Калужской губ.; скончался 26 ноября 1894 г. в С.-Петербурге. Питомец Московского университета, в котором он кончил курс в 1841 г., Ч. всю свою профессорскую деятельность с 1847 г. по 1882 г. посвятил С.-Петербургскому университету. Ученая деятельность Ч., начавшаяся в 1843 г. появлением в свет небольшой заметки "Note sur une classe d'int?grales d?finies multiples" ("Journ. de Liouville", т. VIII), не прекращалась до конца его жизни. Последний его мемуар "О суммах, зависящих от положительных значений какой-либо функции", вышел в свет уже после его кончины (1895, "Mem. de l'Ac. des sc. de St.-Peters."). Заслуги Ч. оценены были ученым миром достойным образом. Он был членом Императорской академии наук с 1853 г., Associ? ?tranger Парижской академии наук с 1860 г. (эту честь Ч. разделял лишь еще с одним русским ученым, знаменитым Бэром, избранным в 1876 г. и в том же году скончавшимся), членом-корреспондентом множества ученых обществ Зап. Европы и почетным членом всех русских университетов. Характеристика его ученых заслуг очень хорошо выражена в записке академиков А. А. Маркова и И. Я. Сонина, читанной в первом после смерти Ч. заседании Академии. В этой записке, между прочим, сказано: "Труды Ч. носят отпечаток гениальности. Он изобрел новые методы для решения многих трудных вопросов, которые были поставлены давно и оставались нерешенными. Вместе с тем он поставил ряд новых вопросов, над разработкой которых трудился до конца своих дней". Академия постановила исходатайствовать средства на издание полного собрания сочинений Ч. и оказать возможное содействие этому предприятию. Существенное материальное содействие исполнению этого предприятия оказал брат покойного, профессор В. Л. Чебышев, а редакцию трудов Ч. взяли на себя авторы упомянутой записки. В настоящее время уже вышел в свет первый том сочинений Ч. на русском и французском языках. Полные список трудов Ч. можно найти в "Известиях Акад. Наук" за 1895 г. (т. II, № 3). Укажем здесь лишь самые замечательные из трудов Ч. Сюда относятся прежде всего работы Ч. по теории чисел. Начало их положено в прибавлениях к докторской диссертации Ч.: "Теория сравнений", напечатанной в 1849 г. В 1850 г. появился знаменитый "M?moire sur les nombres premiers", где даны два предела, в которых заключается число простых чисел, лежащих между двумя данными числами. Результаты Ч. и до сих пор составляют самое существенное из того, что известно по данному вопросу. В 1867 г. во II томе "Моск. Мат. Сб." появился другой весьма замечательный мемуар Ч.: "О средних величинах", в котором дана теорема, лежащая в основе различных вопросов теории вероятностей и заключающая в себе знаменитую теорему Якова Бернулли как частный случай. Этих двух работ было бы достаточно, чтобы увековечить имя Ч. По интегральному исчислению особенно замечателен мемуар 1860 г.: "Sur l'int?gration de la diff?rentielle" b75_452-0.jpg в котором дается способ узнать при помощи конечного числа действий, в случае рациональных коэффициентов подкоренного полинома, возможно ли определить число А так, чтобы данное выражение интегрировалось в логарифмах и, в случае возможности, найти интеграл. Наиболее оригинальными, как по сущности вопроса, так и по методу решения, являются работы Ч. "О функциях, наименее уклоняющихся от нуля". Важнейший из мемуаров, сюда относящихся, есть мемуар 1857 г. под заглавием "Sur les questions de minima qui se rattachent ? la repr?sentation approximative des fonctions" (в "Мем. Акад. Наук"). Эту работу особенно ценят ученые Германии и Франции; так, напр., профес. Клейн в своих лекциях, читанных в Геттингенском университете в 1901 г., называет этот мемуар "удивительным" (wunderbar). Содержание его вошло в классическое сочинение I. Bertrand, "Trait? du Calcul diff. et integral". В связи с этими же вопросами находится и работа Ч. "О черчении географических карт". Далее, замечательны работы Ч. об интерполировании, в которых он дает новые формулы, важные как в теоретическом, так и практическом отношениях. Одним из любимых приемов Ч., которым он особенно часто пользовался, было приложение свойств алгебраических непрерывных дробей к различным вопросам анализа. К работам последнего периода деятельности Ч. относятся исследования "О предельных значениях интегралов ("Sur les valeurs limites des int?grales", 3873). Совершенно новые вопросы, поставленные здесь Ч., разрабатывались затем учениками его. Последний мемуар Ч. 1895 г. относится к той же области. В связи с вопросами "о функциях, наименее уклоняющихся от нуля", находятся и работы Ч. по практической механике, которою он занимался много и с большою любовью. В этой области Ч. принадлежат различные остроумные приборы, из которых один (Machine arithm?tique ? mouvement continu) хранится в Париже, в Conservatoire des arts et m?tiers. Заслуги Ч., как профессора, навсегда останутся в памяти тех, кому выпала завидная доля учиться у него. Он продолжал учить своих учеников и по окончании ими университетского курса, направляя их первые шаги на научном поприще, путем бесед и драгоценных указаний на плодотворные вопросы. Ч. создал школу русских математиков, из которых многие пользуются в настоящее время большою известностью. Общественная деятельность Ч. исчерпывалась его профессурою и участием в делах Академии наук. Из некрологических очерков можно указать прекрасно составленный очерк академика А. М. Ляпунова в VI т. 2-й серии "Изв. Харьк. Матем. Общ.".К. Иоссе.

Брокгауз и Ефрон. Брокгауз и Евфрон, энциклопедический словарь.