Значение слова ДЕЛЕНИЕ в Энциклопедии Брокгауза и Ефрона

Что такое ДЕЛЕНИЕ

? 1) Деление есть действие, обратное умножению; в нем по заданному произведению двух чисел и одному из двух множителей ищется второй множитель. Заданные произведение и множитель называются соответственно делимым и делителем, а искомый множитель ? частным. В частности Д. целого числа на целое определяется, сколько раз меньшее число заключается в большем; в этом случае является еще один элемент Д. ? остаток; далее, под Д. полинома А степени m на полином В степени n (n < m) разумеется определение полиномов: частного ? Q и остатка ? R , степеней n ? m ой и r < m, удовлетворяющих условию:

А = BQ + R.

2) Правила Д. чисел и полиномов излагаются в руководствах; указания относительно приемов, употреблявшихся при Д. в древние и средние века, можно найти, между прочим, у Кантора в " Vorlesungen u ber Geschichte der Mathematik" (Лпц., 1880?92). Из правил приближенного Д. заслуживают внимания так называемое сокращенное Д. и Д. Фурье, названное им division ordonn ee ("Analyse des equations determine es", 1831). В сокращенном Д. при составлении произведений найденных цифр частного на делителя число знаков последнего постепенно уменьшается на одну цифру; при этом поступают, как в следующем примере:

По правилу Фурье прежде всего в делителе отделяют слева один или несколько знаков (по усмотрению), которые и принимаются за действительный делитель. Затем Д. на этот последний делитель (сокращенный) производится по общим правилам, но после сноса цифры делимого к полученному частному остатку всякий раз вводится поправка, которая вычисляется следующим образом: найденные цифры частного подписываются в обратном порядке под цифрами делителя, следующими за теми цифрами, на которые действительно производится Д.; стоящие одна под другой цифры перемножаются, а сумма полученных произведений и составляет число, которое нужно вычесть из соответствующего частного делителя; так, если полный делитель равен 4156, а деление производится на 4 и если в частном найдены цифры 231, то поправка равна

Пример:

В первоначально избранном делителе можно впоследствии, если остатки будут слишком малы, увеличить число цифр; в таком случае к исправленному остатку надо снести соответственные цифры делимого и опять ввести поправку, отвечающую новому делителю, а затем продолжать деление в том же порядке. Доказательство способа Фурье основывается на рассмотрении разрядов единиц, входящих в поправку.

3) Делителем целого числа А наз. целое число, на которое А делится без остатка.

Если В ? делитель А, то все делители В будут делителями А , если же В есть число простое, то оно называется простым делителем числа А. Для определения простых делителей А , вообще говоря, необходимо испытать, делится ли число А на простые числа, меньшие vA.

Пусть р 1 , p 2 ... р m ? простые делители А и пусть А других простых делителей не имеет; в таком случае А может быть представлено в виде

( l 1 , l 2 ,... l m ? целые числа); такое представление возможно только одним образом.

Самое общее выражение для какого-нибудь делителя А будет

Все делители числа А найдутся из произведения

и будут отдельными членами этого произведения.

Число N всех делителей числа А будет, следовательно, равно

N = ( l 1 + 1) ( l 2 + 1)... ( l m + 1)

а сумма их S = самому произведению или (по формуле Безу)

Так, для числа 831600 = 2 4 .3 3 .5 2 .7.11 число делителей N = 5.4.3.2.2 = 240, а сумма делителей S = 3690240.

4) Иногда возможно определить некоторых делителей числа А, не зная простых его делителей и не производя отдельных испытаний, по известным признакам делимости: так, напр., можно доказать, что на 2 делятся числа, последняя цифра которых ? четная; на 3 ? сумма цифр которых делится на 3; на 4 ? две последних цифры которых делятся на 4; на 5 ? последняя цифра которых 0 или 5; на 7 ? если по разделении числа на грани, начиная справа, по три цифры в грани разность суммы четных и нечетных граней делится на 7; на 8 ? если три последних знака делятся на 8; на 9 ? если сумма цифр делится на 9; на 11 ? если разность суммы цифр четного порядка и суммы цифр нечетного порядка, считая справа или слева, делится на 11; на 13 ? если составленная указанным для 7 разность делится на 13 и т. д.

Доказательство приведенных признаков делимости на 3, 9, 7, 11 и 13 получаются из рассмотрении степеней 10, дающих при делении на эти числа остаток ¦1.

С помощью указанных признаков можно прямо установить признаки делимости для произведений двух, трех и т. д. из приведенного выше взаимно простых чисел: например, можно, не производя деления, доказать, что число 2646072 разделится на 10296 = 8.9.11.13; в самом деле: 72 делится на 8; 2 + 7 + 6 + 4 + 6 + 2 = 27 делится на 9, (2 + 0 + 4 + 2) ? (7 + 6 + 6) = ?11 делится на 11; (72 + 2) ? (646) = ?572 делится на 13; по указанным признакам отсюда следует, что самое число разделится на 8, 9, 11 и 13 и на их произведение.

Кроме того, имеется несколько отдельных теорем о делимости чисел; например, если p число простое и а не делится на р, то всегда а р v1 ? 1 разделится на p (теорема Fermat'a); далее, если p число простое, то 1.2.3....( p ? 1) + 1 всегда разделится на p (теорема Wilson'а), и т. д.

5) Общим делителем двух или нескольких чисел называется число, на которое все данные числа делятся без остатка; самый большой из сих делителей называется общим наибольшим делителем. Если для чисел А и В известны все их простые делители, то, очевидно, возможно немедленно найти и их общий наибольший делитель. Но общий наибольший дел. можно найти с помощью конечного числа действий и не зная делителей чисел А и В. Доказательство положения дано еще Эвклидом ("Начала", кн. 8, предл. 2), которому и принадлежит так наз. способ последовательного Д. для нахождения общего наибольшего Д. Если ? есть общий наибольший делитель чисел А и В, то всегда могут быть найдены два целых числа ( < 0 < ) u и v таких, что: Au + Bv = ?.

6. Понятия о делителе и общем делителе могут быть распространены и на полиномы; нахождение общих наибольших делителей двух полиномов также может быть достигнуто последовательным делением.

7) Разделить прямую AB в крайнем и среднем отношении значит разделить ее на 2 таких отрезка, чтобы отношение всей линии AB к большему отрезку равнялось отношению большего отрезка к меньшему. Из различных решений задачи здесь приводится построение, данное Эвклидом ("Начала", кн. 2, пр. II): на данной линии AB строится квадрат ABFE; сторона АЕ квадрата делится пополам в точке D; на продолжении стороны АЕ откладывается DG = DB, на AG строится квадрат; точка C есть искомая.

Сторона правильного десятиугольника равна, как известно, большему отрезку радиуса, разделенному в крайнем и среднем отношении. Аналитически задача Д. прямой в крайнем и среднем отношении приводится к решению квадратного уравнения: если AB обозначить через a , a AC через x , то по условию:

а / х = x /( a ? x ), или x 2 + ax ? a 2 = 0

откуда: x = a [{¦v(5)?1}/2]; так как в задаче ищется положительное решение, то перед корнем должен быть удержан знак +.

Черт. 1.

8) Под задачей Д. всей окружности или какой-нибудь дуги ее на m равных частей разумеется нахождение такого геометрического построения m ной части окружности или дуги, которое основано на употреблении только циркуля и линейки (т. е. круга и прямой линии).

Задача Д. всей окружности на m частей равносильна, очевидно, с построением по заданному радиусу стороны правильного m -угольника. Еще Эвклидом ("Начала", кн. IV) дано решение задачи при m = 3, 4, 5, 6 и 15; равным образом им же указана возможность по стороне правильного m -угольника построить сторону 2 m -угольника; поэтому можно считать вопрос Д. окружности на 2 n k ( k = 3, 4, 5 и 15) частей решенным Эвклидом. Засим Вьет (1589 г., "Canon Mathematicus") привел задачу к решению уравнения, степени m ( m нечетное) относительно стороны соответственного правильного многоугольника. ? В настоящее время, после трудов Гаусса, вопрос представляется в следующем виде: Д. окружности на 2 m + 1 частей или построение угла, равного 2?/(2 m + 1), будет достигнуто, если будет найдено геометрическое построение для sinus'a или cosinus'a этого угла; величина

a = cos[2?/(2 m + 1)] + v(?1) sin[2?/(2 m + 1)]

на основании формулы Моавра (см.) есть один из корней уравнения

( x 2 m +1 ? 1)/( x ? 1) = 0...(*);

все корни этого уравнения могут быть представлены как целые степени одного какого угодно из них. Геометрич. построение искомой величины с помощью заданных возможно тогда и только тогда, если эта величина выражается через заданный рационально или с помощью радикалов 2-го порядка (квадратных корней ? см. в ст. "Число" геометрическое построение иррациональных чисел); поэтому возможность решения задачи зависит от того, выражается ли который-нибудь из корней уравнения указанным образом через коэффициенты уравнения (*). Исследуя последний вопрос, Гаусс в 1801 г. дал теорему: Д. окружности на 2 m + 1 равных частей возможно тогда и только тогда, если число 2m + 1 разлагается на простые делители вида 2 n + 1 и если все эти делители различны между собою.

9) Геометрическое построение для Д. какой угодно дуги на 2 или вообще на 2 n известно также еще с Эвклида; Д. же дуги на три части (так называемая трисекция угла) служило предметом исследования многих древних и новых геометров; из множества предложенных решений укажем на решение с помощью квадратрисы Динострата (см. Динострат): чтобы угол mОА разделить на 3 части, достаточно разделить отрезок DO на 3 части и через последнее Д. провести линию, параллельную ОА до пересечения с квадратрисой в какой-нибудь точке е ; угол еОА равен ? угла mОА.

Черт. 2.

Однако как это решение, так и все прочие основываются на построении других, кроме круга и прямой линии, кривых и потому не удовлетворяют постановленной задаче; причина этих неудач кроется в самой невозможности ее: условия задачи, по существу, приводят, на основании известной формулы тригонометрии cos3? = 4cos 3 ? ? 3cos?, к решению уравнения

y 3 ? ? y ? ?? = 0...(**),

где у = cos?, а ? = cos3?. Ванцель в 1837 г. (во 2-м томе "Jourual de Lionville") показал, что неприводимое уравнение степени m (см. Уравнения) может быть решено в радикалах 2-го порядка тогда и только тогда, если m =2 n . Так как при каком-нибудь ? уравнение (**) неприводимо, то построение корней его с помощью циркуля и линейки (см. п. 8) вообще невозможно. В частном случае, когда ? = 0, уравнение (**) приводится к двум уравнениям у = 0 или у 2 = ? и потому Д. на 3 части угла ? = (?/2) ¦ k?, cosinus которого равен 0, возможно; соответствующее построение дается в учебниках.

Савич.

Брокгауз и Ефрон. Энциклопедия Брокгауза и Ефрона.